日本語 English
株式会社ヒューリンクス
TEL:03-5642-8384
営業時間:9:00-17:30

Enzyme Kinetics Module 解析手法

基質なし pH 依存性(6種)、初速度、熱変性、変性剤変性、指数減衰(4種)、直線
基質1個 基質1(6種)、基質1 – 阻害剤1(8種)、基質1 – 強結合阻害剤(4種)、酵素活性剤あり(Nonessential・SA Complex )
基質2個 基質2(3種)
  1. 組み込まれている各基質数での実験のタイプと式およびグラフの種類

■ 基質の数 = None

    • pH Rate Profile
      • Equations
        • Single pKa (Rising)
          Vmaxlim/(1+10^(pKa-pH))
        • Single pKa (Falling)
          Vmaxlim/(1+10^(pH-pKa))
        • Single pKa With Offset
          (Vlim1 +Vlim2*10^(pH-pKa))/(1+10^(pH-pKa))
        • Bell Shaped
          (Vmaxlim/(1+10^(pKa-pH) + 10^(pH-pKb))
        • Bell Shaped With Plateau
          Vmaxlim*alpha+10^(pKb-pH))/1+ 10^(pKa+pKb-2*pH)+10^(pKb-pH)+10^(pH-pKc))
        • Plateau Shaped
          (Vmaxpla+Vmaxlim*10^(pH-pKb))/1+ 10^(pKa-pH)+10^(pH-pKb))
      • Graphs
        • y vs. pH
        • log(y) vs.pH
        • Residual Graphs
    • First Order Rate

      • Equations
        • First
          limit*(1-exp(-k*t))
        • First + Offset
          limit*(1-exp(-k*t))
      • Graphs
        • v vs.t
        • Residual Graphs
    • Protein Denaturant Melt

      • Equations
        • Denaturant Melt
          ff*(ub-lb)+lb
      • Graphs
        • y vs. [Denaturant]
        • Residual Graphs
    • Protein Temperature Melt

      • Equations
        • Temperature Melt
          ff*(lb-rb)+rb
      • Graphs
        • y (response) vs. Temperature
        • Residual Graphs
    • Exponential Decay

      •  Equations
        • Single Exponential
          ymax*exp(-k*t)
        • Single Exponential + Offset
          y0+ymax*exp(-k*t)
        • Double Exponential
          ymax1*exp(-k1*t)+ymax2*exp(-k2*t)
        • Double Exponential + Offset
          y0+ymax1*exp(-k1*t)+ymax2*exp(-k2*t)
      • Graphs
        • y(residuals) vs. time
        • log(y) vs. t
        • Residual Graphs
    • Regression
      • Equations
        • Linear
          y0+a*x
      • Graphs
        • y vs. x
        • Residual Graphs

■ 基質数 = 1

    • Single Substrate
      • Equations
        • Michaelis-Menten
          v = Vmax*S/(Km+S)
        • Substrate Inhibition (Uncompetitive)
          y= Vmax/(1+Km/S+S/Ki)
        • Substrate Activation (Ordered)
          v = Vmax*(S/Ks)2/alpha/(1+S/Ks+(S/Ks)2/alpha)
        • Substrate Activation (Random)
          v = Vmax*(S/Ks)2/alpha/(1+S/Ks+S/(Ks/alpha)+(S/Ks)2/alpha)
        • Hill
          v = Vmax*Sn/(Kmn+Sn)
        • Isoenzyme
          v = Vmax1*(S/Km1)/(1+S/Km1)+Vmax2*(S/Km2)/(1+S/Km2)
      • Graphs
        • Michaelis-Menten
        • Lineweaver-Burk
        • Eadie-Hofstee
        • Scatchard
        • Hanes-Woolf
        • Hill
        • Residual Graphs
    • Single Substrate – Single Inhibitor
      • Equations
        • Competitive (Full)
          v = Vmax/(1+(Km/S)*(1+I/Ki))
        • Competitive (Partial)
          v = Vmax/(1+(Km/S)*(1+I/Ki1)/(1+I/Ki2))
        • Noncompetitive (Full)
          v = Vmax/((1+I/Ki)*(1+Km/S))
        • Noncompetitive (Partial)
          v = Vmax/((1+Km/S)*(1+I/Ki)/(1+I*beta/Ki))
        • Mixed (Full)
          v = Vmax/((Km/S)*(1+I/Ki)+(1+I/(alpha*Ki)))
        • Mixed (Partial)
          v = Vmax*((1+beta*I/(alpha*Ki))/(1+I/(alpha*Ki)))/ (1+(Km/S)*(1+I/Ki)/(1+I/(alpha*Ki)))
        • Uncompetitive (Full)
          v = Vmax/(1+I/Ki+Km/S)
        • Uncompetitive (Partial)
          v = Vmax*(1+beta*(I/Ki))/(1+I/Ki+Km/S)
      • Graphs
        • Michaelis-Menten
        • Lineweaver-Burk
        • Eadie-Hofstee
        • Scatchard
        • Hanes-Woolf
        • Hill
        • Dixon
        • Residual Graphs
    • Tight Binding Inhibitor
      • Equations
        • Competitive Tight
          • v0 = Vmax/(Km/S+1)
          • Kap = Ki*((S/Km)+1)
          • v = (v0/(2*E))*(E-I-Kap+sqrt((E-I-Kap)2+4*E*Kap))
        • Noncompetitive Tight
          • v0 = Vmax/(Km/S+1)
          • v = (v0/(2*E))*(E-I-Ki+sqrt((E-I-Ki)2+4*E*Ki))
        • Uncompetitive Tight
          • v0 = Vmax/(Km/S+1)
          • Kap = Ki*((Km/S)+1)
          • v = (v0/(2*E))*(E-I-Kap+sqrt((E-I-Kap)2+4*E*Kap))
        • Mixed Tight
          • E = 27
          • alpha = 5.6
          • v0 = Vmax/(Km/S+1)
          • Iap = Ki*((S/Km)+1)*alpha/(alpha+S/Km)
          • v = ((v0-vinf)/(2*E))*(((v0+vinf)/(v0-vinf))*E-I-Iap+sqrt((E-I-Iap)2+4*E*Iap))
      • Graphs
        • Michaelis-Menten
        • Lineweaver-Burk
        • Eadie-Hofstee
        • Scatchard
        • Hanes-Woolf
        • Hill
        • Dixon
        • Residual Graphs
    • Enzyme Activator – Nonessential
      • Equations
        • Nonessential
          v = Vmax*(1+beta*A/(alpha*Ka))/((Km/S)*(1+A/Ka)+(1+A/(alpha*Ka)))
      • Graphs
        • Michaelis-Menten
        • Lineweaver-Burk
        • Eadie-Hofstee
        • Scatchard
        • Hanes-Woolf
        • Hill
        • Residual Graphs
    • Enzyme Activator – SA Complex
      • Equations
        • Specific
          v = Vmax*S/Km/(1+S/Km+Ka/A)
        • Catalytic
          v = Vmax*S/Km/(1+Ka/A+S/Km*(1+Ka/A))
        • Mixed
          v = Vmax*S/Km/(1+Kas/A+S/Km*(1+Kac/A))
      • Graphs
        • Michaelis-Menten
        • Lineweaver-Burk
        • Eadie-Hofstee
        • Scatchard
        • Hanes-Woolf
        • Hill
        • Residual Graphs

■ 基質数 = 2

    • Two Substrate
      • Equations
        • Random Bi-Bi (Sequential)
          y = Vmax*A*B/(alpha*Ka*Kb+Kb*A+Ka*B)+A*B)
        • Ordered Bi-Bi (Sequential)
          y = Vmax*A*B/(Ka*Kb+Kb*A+A*B)
        • Ping Pong Bi-Bi (Nonsequential)
          if ((A=0)(B=0), 0, y = Vmax*A*B/(Kb*A+Ka*B+A*B))
      • Graphs
        • Michaelis-Menten A
        • Michaelis-Menten B
        • Lineweaver-Burk A
        • Lineweaver-Burk B
        • Eadie-Hofstee A
        • Eadie-Hofstee B
        • Scatchard A
        • Scatchard B
        • Hanes-Woolf A
        • Hanes-Woolf B
        • Hill A
        • Hill B
        • Residual Graphs
  1. ユーザー定義式の登録
    • 以下の実験タイプには式を追加することが出来ます。
      • pH Rate Profile
      • First Order Rate
      • Protein Denaturant Melt
      • Protein Temperature Melt
      • Exponential Decay
      • Regression