Welcome to Q-Chem A Quantum Leap Into The Future Of Chemistry Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko,S. V. Levchenko, D. P. O'Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khaliullin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Q-Chem, Version 3.1, Q-Chem, Inc., Pittsburgh, PA (2007). Additional authors for Version 3.1: Z. Gan, Y. Zhao, N. E. Schultz, D. Truhlar, E. Epifanovsky and M. Oana. Additional authors for Version 3.2: R. Baer, B. R. Brooks, D. Casanova, J.-D. Chai, C.-L. Cheng, C. Cramer, D. Crittenden, A. Ghysels, G. Hawkins, E. G. Hohenstein, C. Kelley, W. Kurlancheek, D. Liotard, E. Livshits, P. Manohar, A. Marenich, D. Neuhauser, R. Olson, M. A. Rohrdanz, K. S. Thanthiriwatte, A. J. W. Thom, V. Vanovschi, C. F. Williams, Q. Wu and Z.-Q. You. Intel X86 Linux Version Q-chem begins on Tue Feb 15 07:43:54 2011 Host: fluffy.usc.edu 0 theFileMan(): MAXOPENFILES=974 MAX_SUB_FILE_NUM=16 Maximum size of a physical file is 2.0 GB, maximum size of a tmp-file is 32.0 GB -------------------------------------------------------------- EFP input options: -------------------------------------------------------------- EFP_FRAGMENTS_ONLY = 0 : QM/EFP job EFP fragment - fragment interactions: EFP_ELEC = 1 : electrostatics is enabled EFP_POL = 1 : polarization is enabled EFP_EXREP = 1 : exchange-repulsion is enabled EFP_DISP = 1 : dispersion is enabled QM/EFP interactions: EFP_QM_ELEC = 1 : electrostatics is enabled EFP_QM_POL = 1 : polarization is enabled EFP_QM_EXREP = 0 : exchange-repulsion is disabled EFP/EFP screening: EFP_ELEC_DAMP = 2 : electrostatic damping using exponential formula for charges only if screening parameters are provided in the EFP input. EFP_DISP_DAMP = 1 : dispersion damping using Tang-Toennies damping, with a fixed parameter b=1.5. QM/EFP screening: EFP_QM_ELEC_DAMP = 0 : electrostatic damping is disabled -------------------------------------------------------------- At least one of the EFs is missing basis -> exchange repulsion will be disabled Finally everything over in PARseQInput -------------------------------------------------------------- User input: -------------------------------------------------------------- $comment excited states of formaldehyde in a presence of 6 EFP waters test of CIS(D), EOM-CCSD, and EOM-CCSD with frozen core and FNO $end $molecule 0 1 C1 1.0632450881806 2.0267971791743 0.4338879750526 O2 1.1154451117032 1.0798728186948 1.1542424552747 H3 1.0944666250874 3.0394904220684 0.8360468907200 H4 0.9836601903170 1.9241779934791 -0.6452234478151 $end $rem basis 6-31+G* exchange hf efp_fragments_only false purecart 2222 scf_convergence 8 correlation cis(d) eom_ee_singlets 2 eom_ee_triplets 2 ccman2 false $end $efp_fragments water 1.45117729 -1.31271387 -0.39790305 -1.075756 2.378141 1.029199 water 1.38370965 0.22282733 -2.74327999 2.787663 1.446660 0.168420 water 4.35992117 -1.31285676 0.15919381 -1.674869 2.547933 -2.254831 water 4.06184149 2.79536141 0.05055916 -1.444143 0.750463 -2.291224 water 4.09898096 0.83731430 -1.93049301 2.518412 1.592607 -2.199818 water 3.96160175 0.71581837 2.05653146 0.825946 1.414384 0.966187 $end $efp_params fragment water o 0.0 0.0 0.118669999966 h 0.0 0.753987009657 -0.474680009759 h 0.0 -0.753987009657 -0.474680009759 mult 0.0 0.0 0.118669999966 8.00000 mult 0.0 0.753987009657 -0.474680009759 1.00000 mult 0.0 -0.753987009657 -0.474680009759 1.00000 mult 0.0 0.0 0.118669999966 -8.1265816511 0.0000000000 0.0000000000 -0.7941982205 -4.7523254414 -3.5909929131 -3.9050388551 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -1.9970132546 0.0000000000 -0.6091934659 0.0000000000 -0.7292400334 0.0000000000 0.0000000000 0.0000000000 mult 0.0 0.753987009657 -0.474680009759 -0.6378406008 0.0000000000 0.0888890416 -0.0522069961 -0.3833762140 -0.3738696207 -0.3690354428 0.0000000000 0.0000000000 -0.0073238838 0.0000000000 0.1295942783 -0.0580609838 0.0465199460 -0.0220014840 0.0000000000 -0.0148070246 0.0000000000 0.0396185757 0.0000000000 mult 0.0 -0.753987009657 -0.474680009759 -0.6378406008 0.0000000000 -0.0888890416 -0.0522069961 -0.3833762140 -0.3738696207 -0.3690354428 0.0000000000 0.0000000000 0.0073238838 0.0000000000 -0.1295942783 -0.0580609838 -0.0465199460 -0.0220014840 0.0000000000 -0.0148070246 0.0000000000 -0.0396185757 0.0000000000 mult 0.0 0.376993504829 -0.178005004923 -0.2988685737 0.0000000000 -0.2392382477 0.2876507384 -0.0596543627 0.0891290953 0.0434249504 0.0000000000 0.0000000000 -0.1071361440 0.0000000000 -0.6655595159 0.8701202039 -0.2044454491 0.2816085368 0.0000000000 0.3207025405 0.0000000000 -0.2373168434 0.0000000000 mult 0.0 -0.376993504829 -0.178005004923 -0.2988685737 0.0000000000 0.2392382477 0.2876507384 -0.0596543627 0.0891290953 0.0434249504 0.0000000000 0.0000000000 0.1071361440 0.0000000000 0.6655595159 0.8701202039 0.2044454491 0.2816085368 0.0000000000 0.3207025405 0.0000000000 0.2373168434 0.0000000000 pol -5.21133754815e-07 -0.397169419554 -0.212774686346 0.8148484263 2.8090500823 1.8872874419 0.0000025717 0.0000021879 1.4144626523 0.0000019255 0.0000016286 1.2432122571 pol -2.48078294331e-07 0.397169433313 -0.212774690315 0.8148483778 2.8090499070 1.8872872865 -0.0000012188 0.0000010362 -1.4144625242 -0.0000009166 0.0000007753 -1.2432121331 pol 0.265034098979 -1.1361435536e-07 0.259421015249 2.7133702541 1.4581392265 1.8762727378 -0.0000007201 1.0869698776 -0.0000010107 -0.0000005381 0.9796423596 -0.0000010226 pol -0.265033329767 9.98557468863e-08 0.259422395926 2.7133556615 1.4581450880 1.8762849392 -0.0000006328 -1.0869731232 0.0000008883 -0.0000004708 -0.9796447636 0.0000008986 $end -------------------------------------------------------------- ---------------------------------------------------- Standard Nuclear Orientation (Angstroms) I Atom X Y Z ---------------------------------------------------- 1 C 0.524512 0.000804 0.000092 2 O -0.666413 0.000723 -0.000022 3 H 1.085163 -0.934036 -0.000186 4 H 1.099066 0.923427 -0.000188 ---------------------------------------------------- Molecular Point Group C1 NOp = 1 Largest Abelian Subgroup C1 NOp = 1 Nuclear Repulsion Energy = 31.7046363845 hartrees There are 8 alpha and 8 beta electrons Q-Chem warning in module BasisType.C, line 1138: You are not using the predefined 5D/6D in this basis set. Requested basis set is 6-31+G(d) There are 14 shells and 42 basis functions Total memory of 1301MB is distributed as follows: QALLOC including MEM_STATIC uses 1301MB MEM_STATIC is set to 301MB CCMAN JOB total memory use is 1000MB Warning: actual memory use might exceed 1301MB Total QAlloc Memory Limit 1301 MB Mega-Array Size 295 MB MEM_STATIC part 301 MB Distance Matrix (Angstroms) C ( 1) O ( 2) H ( 3) O ( 2) 1.190924 H ( 3) 1.090071 1.985394 H ( 4) 1.086897 1.992058 1.857515 A cutoff of 1.0D-14 yielded 105 shell pairs There are 969 function pairs Smallest overlap matrix eigenvalue = 5.89E-03 Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01 Standard Electronic Orientation quadrupole field applied Nucleus-field energy = 0.0000000004 hartrees NEW_GEOM_ORIGIN 1 1 2.0528518 2 3.0428646 3 1.4206124 QCHEM ORIENT_MATRIX 1 2 3 1 -0.0437318 0.7951579 -0.6048235 2 -0.0593287 -0.6064012 -0.7929424 3 -0.9972801 0.0012066 0.0736947 Coordintates of atoms in the effective region (ANGSTROMS) O -1.620789 2.758337 -0.386474 H -1.533197 1.834740 -0.141818 H -1.948542 2.722908 -1.287520 O 1.074842 3.513977 -0.595304 H 0.135658 3.408149 -0.430094 H 1.242428 4.430349 -0.365656 O -2.041204 2.125936 -3.253286 H -2.728615 2.306232 -3.897894 H -2.032439 1.168307 -3.194722 O 1.179242 -0.397059 -2.931223 H 1.199124 0.547108 -3.100676 H 1.730477 -0.762635 -3.626244 O 0.951103 2.356343 -3.272193 H 1.142215 2.829102 -2.459459 H 0.008562 2.488350 -3.393646 O -1.704219 -0.634422 -2.857062 H -1.875731 -0.835225 -1.934662 H -0.751381 -0.717753 -2.932672 NEW_GEOM_ORIGIN 1 1 2.0528518 2 3.0428646 3 1.4206124 NCycle 0 Check the number of atoms 18 Nuclear - Fragment Charge Energy = 0.098207163812 Nuclear - Fragment Dipole Energy = 0.021618901810 Nuclear - Fragment Quadrupole Energy = 0.066717573900 Nuclear - Fragment Octupole Energy = -0.001293284283 Nuclear - Fragment Total Energy = 0.185250355239 Charge - Charge Energy = -0.022824839264 Charge - Dipole Energy = -0.019985614791 Charge - Quadrupole Energy = -0.021199607454 Charge - Octupole Energy = 0.001157887989 Dipole - Dipole Energy = -0.004909717732 Dipole - Quadrupole Energy = -0.005882006962 Quadrupole - Quadrupole Energy = -0.007606631675 Fragment - Fragment Total Energy = -0.081250529888 EFP Electrostatics Energy = 0.103999825351 EFP Polarization Energy EPol2 = -2.659525298324 Guess from superposition of atomic densities Warning: Energy on first SCF cycle will be non-variational A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS extrapolation SCF converges when DIIS error is below 1.0E-08 --------------------------------------- Cycle Energy DIIS Error --------------------------------------- 1 -108.9979754434 1.15E-01 2 -113.9185184847 1.81E-02 3 -113.9592772434 1.20E-02 4 -113.9929379267 1.95E-03 5 -114.0025397151 6.22E-04 6 -114.0026119909 1.59E-04 7 -114.0040051390 5.82E-05 8 -114.0042721068 1.61E-05 9 -114.0043125674 2.92E-06 10 -114.0042990797 6.67E-07 11 -114.0042905636 2.72E-07 12 -114.0042892464 1.16E-07 13 -114.0042887876 3.17E-08 14 -114.0042888051 5.76E-09 Convergence criterion met --------------------------------------- SCF time: CPU 1.64 s wall 1.64 s Summary of EFP interfragment interaction energies Electrostatics Energy = 0.103999825351 Exchange-Repulsion Energy = 0.000000000000 Polarization Energy = -0.009397416634 Dispersion Energy = 0.000000000000 Total Interfragment Energy = 0.094602408717 SCF energy in the final basis set = -114.0042888051 Total energy in the final basis set = -114.0042888051 ccman2 params structure: ccman1 = 1 ccman2 = 0 ccman2.capable = 0 ccman2.memory = 1000 ccman2.threads = 1 ccman2.hf = 1 ccman2.hf.symmetry = 0 ccman2.hf.unrestricted = 0 ccman2.hf.ri = 0 sizes.nalpha = 8 sizes.nbasis = 42 sizes.nbeta = 8 sizes.nlinbasis = 42 sizes.norbs_per_block = 16 sizes.nreordermos = 0 sizes.ns2 = 969 sizes.ns2car = 969 sizes.frozen.occ = 0 sizes.frozen.virt = 0 sizes.restr.occ = 0 sizes.restr.virt = 0 --------- ****************************************************** * C C M A N * * * * Anna I. Krylov * * C. David Sherrill * * Steven R. Gwaltney * * Edward F. C. Byrd * * June 2000 * * * * AND * * * * Sergey V. Levchenko * * Lyudmila V. Slipchenko * * Tao Wang * * Ana-Maria C. Cristian * * * * November 2003 * * * * AND * * * * Piotr A. Pieniazek * * C. Melania Oana * * E. Epifanovsky * * * * October 2007 * * * * * ****************************************************** Adjusting EOM_EE_STATES The orbitals are ordered and numbered as follows: Alpha orbitals: Number Energy Type Symmetry ANLMAN number Total number: 0 -20.604 AOCC A1 1A1 1 1 -11.351 AOCC A1 2A1 2 2 -1.435 AOCC A1 3A1 3 3 -0.878 AOCC A1 4A1 4 4 -0.711 AOCC A1 5A1 5 5 -0.672 AOCC A1 6A1 6 6 -0.560 AOCC A1 7A1 7 7 -0.454 AOCC A1 8A1 8 0 0.077 AVIRT A1 9A1 9 1 0.092 AVIRT A1 10A1 10 2 0.104 AVIRT A1 11A1 11 3 0.118 AVIRT A1 12A1 12 4 0.168 AVIRT A1 13A1 13 5 0.259 AVIRT A1 14A1 14 6 0.287 AVIRT A1 15A1 15 7 0.314 AVIRT A1 16A1 16 8 0.324 AVIRT A1 17A1 17 9 0.369 AVIRT A1 18A1 18 10 0.407 AVIRT A1 19A1 19 11 0.524 AVIRT A1 20A1 20 12 0.855 AVIRT A1 21A1 21 13 0.942 AVIRT A1 22A1 22 14 0.949 AVIRT A1 23A1 23 15 1.169 AVIRT A1 24A1 24 16 1.185 AVIRT A1 25A1 25 17 1.237 AVIRT A1 26A1 26 18 1.437 AVIRT A1 27A1 27 19 1.474 AVIRT A1 28A1 28 20 1.478 AVIRT A1 29A1 29 21 1.726 AVIRT A1 30A1 30 22 1.758 AVIRT A1 31A1 31 23 1.794 AVIRT A1 32A1 32 24 1.957 AVIRT A1 33A1 33 25 2.197 AVIRT A1 34A1 34 26 2.226 AVIRT A1 35A1 35 27 2.490 AVIRT A1 36A1 36 28 2.722 AVIRT A1 37A1 37 29 2.893 AVIRT A1 38A1 38 30 3.021 AVIRT A1 39A1 39 31 3.363 AVIRT A1 40A1 40 32 4.434 AVIRT A1 41A1 41 33 4.612 AVIRT A1 42A1 42 EOM_EE_SINGLETS = 2 EOM_EE_TRIPLETS = 2 blck_tnsr_buffsz = 904 ccjobtype = properties ccman2 = 0 do_efp = 1 do_ri = 0 eomcorr = cis(d) print_lvl = 1 refcorr = none test_mode = 0 threads = 1 tmp_maxbuffsz = 96 unrestricted = 0 ccprop.calc_soc = 0 ccprop.ccref_prop = 1 ccprop.do_dyson = 0 ccprop.do_dyson_ee = 0 ccprop.eom_prop = 1 ccprop.eom_prop_1e = 1 ccprop.eom_prop_2e = 0 ccprop.fullresponse = 0 ccprop.plot_densities = 0 ccprop.ref_prop_1e = 1 ccprop.ref_prop_2e = 0 ccprop.trans_prop = 0 ccsd.dOV_threshold = 0 ccsd.diis_freq = 1 ccsd.diis_max_overlap = 1 ccsd.diis_min_overlap = 1e-11 ccsd.diis_size = 7 ccsd.diis_start = 3 ccsd.energy_convergence = 1e-08 ccsd.maxiter = 100 ccsd.restart = 0 ccsd.saveampl = 0 ccsd.scale_amp = 1 ccsd.solver = diis ccsd.t_convergence = 1e-08 ccsd.z_convergence = 1e-08 eom.convergence = 1e-06 eom.do_fake_ipea = 0 eom.dthreshold = 1e-06 eom.filter_ipea = 0 eom.maxiter = 30 eom.maxvectors = 60 eom.nguess_doubles = 0 eom.nguess_singles = 0 eom.preconv_doubles = 0 eom.preconv_sd = 0 eom.preconv_singles = 0 eom.use_exdiag = 0 mgc.amodel = 0 mgc.canonize = 0 mgc.canonize_final = 0 mgc.canonize_freq = 50 mgc.dOV_threshold = 0 mgc.diis = 0 mgc.diis12_switch = 1e-05 mgc.diis_freq = 2 mgc.diis_max_overlap = 1 mgc.diis_min_overlap = 1e-11 mgc.diis_size = 7 mgc.diis_start = 2 mgc.do_ed_ccd = 0 mgc.do_qccd = 0 mgc.energy_convergence = 1e-08 mgc.hess_threshold = 0.01 mgc.iterate_ov = 0 mgc.maxiter = 100 mgc.maxtrank = 0 mgc.mgc_ampread = 0 mgc.mgc_amps = 2 mgc.mgc_ampscale = 0 mgc.mgc_cc_gvb_guess = 0 mgc.mgc_create_dm = 0 mgc.mgc_eom = 0 mgc.mgc_frzn_core = 0 mgc.mgc_gvb_n_pairs = 0 mgc.mgc_ip = 0 mgc.mgc_localinter = 0 mgc.mgc_localints = 1 mgc.mgc_oo_type = 0 mgc.mgc_ph = 0 mgc.mgc_renorm = 0 mgc.mgc_skip_ae = 0 mgc.mgc_write_ints = 0 mgc.nlpairs = 2 mgc.preconv_frozen = 0 mgc.preconv_t2z = 0 mgc.preconv_t2z_each = 0 mgc.reset_theta = 15 mgc.restart = 0 mgc.saveampl = 0 mgc.scale_amp = 1 mgc.solver = diis mgc.t_convergence = 1e-08 mgc.theta_convergence = 0.0001 mgc.theta_grad_convergence = 0.0001 mgc.theta_grad_threshold = 0.01 mgc.theta_stepsize = 1 mgc.turn_on_qccd = 0.01 mgc.z_convergence = 1e-08 ooccd.canonize_final = 0 ooccd.canonize_freq = 50 ooccd.dOV_threshold = 0 ooccd.diis = 0 ooccd.diis12_switch = 1e-05 ooccd.diis_freq = 2 ooccd.diis_max_overlap = 1 ooccd.diis_min_overlap = 1e-11 ooccd.diis_size = 7 ooccd.diis_start = 2 ooccd.do_ed_ccd = 0 ooccd.do_qccd = 0 ooccd.energy_convergence = 1e-08 ooccd.hess_threshold = 0.01 ooccd.iterate_ov = 0 ooccd.maxiter = 100 ooccd.preconv_frozen = 0 ooccd.preconv_t2z = 0 ooccd.preconv_t2z_each = 0 ooccd.reset_theta = 15 ooccd.restart = 0 ooccd.saveampl = 0 ooccd.scale_amp = 1 ooccd.solver = diis ooccd.t_convergence = 1e-08 ooccd.theta_convergence = 0.0001 ooccd.theta_grad_convergence = 0.0001 ooccd.theta_grad_threshold = 0.01 ooccd.theta_stepsize = 1 ooccd.turn_on_qccd = 0.01 ooccd.z_convergence = 1e-08 orbitals.canonize = 1 orbitals.do_fno = 0 orbitals.mp2_grad = 0 orbitals.mp2no_guess = 0 orbitals.reorthogonalize_mo = 0 orbitals.restart_no_scf = 0 orbitals.restricted_amplitudes = 1 orbitals.restricted_triples = 0 pt_corr.incl_core_corr = 1 pt_corr.incl_virt_corr = 1 pt_corr.sd_corr_only = 0 solvent_model.cc_solvent = 0 svd.analyze_t2 = 0 svd.d1_d2_diag = 0 svd.energy_decomp = 0 svd.svd_algorithm = 1 svd.svd_decompose_geminals = 0 svd.svd_first_geminal = 0 svd.svd_incl_singles = 1 svd.svd_n_values = 1 svd.svd_plot_geminals = 0 svd.t2_lowrank = 0 MOLECULAR PARAMETERS: ORB SYMM INFO: POINT GROUP=C1 NIRREPS = 1 MOL ORB= 42 IRREPS = A1 ORBSPI = 42 DOCC = 8 SOCC = 0 FDOCC = 0 RDOCC = 0 AAOCC = 8 BAOCC = 8 AAVIRT = 34 BAVIRT = 34 RUOCC = 0 FUOCC = 0 IRREP MULT TABLE: 0 ORBSYM ALPHA= A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 ORBSYM BETA = A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 BASIS ORBS = 42 MOL ORBS = 42 NAUXBASIS = 0 FROZEN OCC = 0 FROZEN VIR = 0 CORR ORBS = 42 CORR SP ORBS = 84 NUM ALP ELEC = 8 NUM BET ELEC = 8 NUM ALP EXPL = 8 NUM BET EXPL = 8 NUM SO OCC = 16 NUM SO VIR = 68 NUM RESTR DOCC= 0 NUM RESTR DVIRT= 0 ORBS PER BLCK = 16 RESTRICTED_REF = 1 BLOCKING PARAMETERS: NUM ROCC BLOCKS = 0 NUM AOCC BLOCKS= 1 NUM AVIRT BLOCKS= 3 NUM RVIRT BLOCKS= 0 ORBITALS/BLOCK = 8 8 12 11 11 12 11 11 BIRREP = A1 A1 A1 A1 A1 A1 A1 A1 DOING GENUINE CIS(D) CALCULATIONS REFERENCE: EHF = -114.004288774 MP2 CORR = -0.308835785 MP2 = -114.313124559 SOLVE LINEAR RESPONSE EQUATIONS FOR LOWSPIN SINGLE EXCITATIONS OF A1 IRREP GENUINE CIS CODE Singles guess formation using CSF: State 1: 7 -> 0 ( 0.5311) State 2: 7 -> 1 ( 0.5462) 2 singly-excited guess vectors generated SIZE OF R1 = 0.0 MB BLCK_TNSR_BUFFSZ=904 INCORE=163358 PARAMETERS FOR DAVIDSON DIAGONALIZATION PROCEDURE: NROOTS= 2 MAX VECTORS= 60 MAXITER= 30 CONV= 0.00000100 THRESH= 0.00000100 SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=163358 Itr|Conv |ResNorm |NVecs|Lock|Comments 0| 0 |9.5E-03 | 2 | 0 | 1| 0 |1.8E-03 | 4 | 0 | 2| 0 |9.9E-05 | 6 | 0 | 3| 0 |2.2E-05 | 8 | 0 | 4| 0 |3.7E-06 | 10 | 0 | 5| 1 |9.5E-07 | 12 | 1 | 6| 2 |3.2E-07 | 13 | 2 |Collapse current subspace Davidson::MakeNextIter() : ITERATIONS CONVERGED Excitation energies, hartree 0 0 0.187399 1 0.333579 2 lowest roots of symmetry A1: Root 1 Conv-d yes Tot Ene= -113.816889813 hartree (Ex Ene 5.099 eV),HF ene= -114.004288774 U1: Value i -> a 0.4056 7( A1) B -> 0( A1) B 0.4056 7( A1) A -> 0( A1) A 0.4037 7( A1) B -> 4( A1) B 0.4037 7( A1) A -> 4( A1) A Dipole moment x y z Total -0.653724426 0.009579529 0.070292902 a.u. |mu| = 0.657562533 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 35.913670905 13.546805395 10.659761088 a.u. Total = 60.120237388 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx NAlpha= 8 ; NBeta= 8 = 0.000000000 EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.023259500 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.022399865 Hartree Total = dE1 + dE2 = -0.000859635 Hartree = -0.0234 eV Tot Ene with polarization correction= -113.817749448 hartree (Ex Ene 5.076 eV) Root 1 CIS(D) corr= -0.023694601 hartree (-0.645 eV); E_CIS(D)=-114.149420198 hartree (E_ex= 4.455 eV) E_CIS(D) with polarization correction= -114.150279834 hartree (Ex Ene 4.431 eV) Root 2 Conv-d yes Tot Ene= -113.670709854 hartree (Ex Ene 9.077 eV),HF ene= -114.004288774 U1: Value i -> a -0.5264 7( A1) B -> 1( A1) B -0.5264 7( A1) A -> 1( A1) A 0.4221 7( A1) B -> 0( A1) B 0.4221 7( A1) A -> 0( A1) A Dipole moment x y z Total -2.440899112 -0.251226387 0.134358807 a.u. |mu| = 2.457469321 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 40.932759617 22.094629774 17.344033245 a.u. Total = 80.371422636 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx NAlpha= 8 ; NBeta= 8 = 0.000000000 EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.060230942 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.059327694 Hartree Total = dE1 + dE2 = -0.000903248 Hartree = -0.0246 eV Tot Ene with polarization correction= -113.671613102 hartree (Ex Ene 9.053 eV) Root 2 CIS(D) corr= -0.068677401 hartree (-1.869 eV); E_CIS(D)=-114.048223040 hartree (E_ex= 7.208 eV) E_CIS(D) with polarization correction= -114.049126288 hartree (Ex Ene 7.184 eV) SOLVE LINEAR RESPONSE EQUATIONS FOR HIGHSPIN SINGLE EXCITATIONS OF A1 IRREP GENUINE CIS CODE Singles guess formation using CSF: State 1: 7 -> 0 ( 0.5311) State 2: 7 -> 1 ( 0.5462) 2 singly-excited guess vectors generated SIZE OF R1 = 0.0 MB BLCK_TNSR_BUFFSZ=904 INCORE=163358 PARAMETERS FOR DAVIDSON DIAGONALIZATION PROCEDURE: NROOTS= 2 MAX VECTORS= 60 MAXITER= 30 CONV= 0.00000100 THRESH= 0.00000100 SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=163358 Itr|Conv |ResNorm |NVecs|Lock|Comments 0| 0 |1.2E-02 | 2 | 0 | 1| 0 |2.3E-03 | 4 | 0 | 2| 0 |1.8E-04 | 6 | 0 | 3| 0 |5.8E-05 | 8 | 0 | 4| 0 |1.6E-05 | 10 | 0 | 5| 1 |4.4E-06 | 12 | 1 | 6| 1 |1.9E-04 | 13 | 1 | 7| 1 |1.4E-02 | 14 | 1 | 8| 1 |1.4E-03 | 15 | 1 | 9| 1 |1.4E-04 | 16 | 1 | 10| 1 |2.6E-05 | 17 | 1 | 11| 1 |5.2E-06 | 18 | 1 | 12| 1 |7.8E-07 | 19 | 1 | 13| 2 |1.1E-07 | 20 | 2 |Collapse current subspace Davidson::MakeNextIter() : ITERATIONS CONVERGED Excitation energies, hartree 0 0 0.160031 1 0.207643 2 lowest roots of symmetry A1: Root 1 Conv-d yes Tot Ene= -113.844257634 hartree (Ex Ene 4.355 eV),HF ene= -114.004288774 U1: Value i -> a -0.4070 7( A1) B -> 4( A1) B 0.4070 7( A1) A -> 4( A1) A -0.3980 7( A1) B -> 0( A1) B 0.3980 7( A1) A -> 0( A1) A Dipole moment x y z Total -0.698525717 0.010181044 0.063602231 a.u. |mu| = 0.701489184 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 35.813762336 13.494483002 10.540695058 a.u. Total = 59.848940396 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx NAlpha= 8 ; NBeta= 8 = 2.000000000 EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.021449109 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.020646315 Hartree Total = dE1 + dE2 = -0.000802794 Hartree = -0.0218 eV Tot Ene with polarization correction= -113.845060428 hartree (Ex Ene 4.333 eV) Root 1 CIS(D) corr= -0.012046725 hartree (-0.328 eV); E_CIS(D)=-114.165140144 hartree (E_ex= 4.027 eV) E_CIS(D) with polarization correction= -114.165942938 hartree (Ex Ene 4.005 eV) Root 2 Conv-d yes Tot Ene= -113.796646233 hartree (Ex Ene 5.650 eV),HF ene= -114.004288774 U1: Value i -> a -0.4268 6( A1) B -> 4( A1) B 0.4268 6( A1) A -> 4( A1) A -0.3769 6( A1) B -> 0( A1) B 0.3769 6( A1) A -> 0( A1) A Dipole moment x y z Total -0.435236547 0.000539707 0.038298785 a.u. |mu| = 0.436918688 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 37.019502769 14.801146329 9.108407236 a.u. Total = 60.929056335 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx NAlpha= 8 ; NBeta= 8 = 2.000000000 EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.024638739 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.023966778 Hartree Total = dE1 + dE2 = -0.000671961 Hartree = -0.0183 eV Tot Ene with polarization correction= -113.797318194 hartree (Ex Ene 5.632 eV) Root 2 CIS(D) corr= 0.041473058 hartree (1.129 eV); E_CIS(D)=-114.064008959 hartree (E_ex= 6.779 eV) E_CIS(D) with polarization correction= -114.064680920 hartree (Ex Ene 6.760 eV) CI job: CPU 1.88 s wall 1.89 s CCMAN JOB: ALL CPU 1.88 s wall 1.89 s Analysis of SCF Wavefunction -------------------------------------------------------------- Orbital Energies (a.u.) -------------------------------------------------------------- Alpha MOs -- Occupied -- -20.604 -11.351 -1.435 -0.878 -0.711 -0.672 -0.560 -0.454 -- Virtual -- 0.077 0.092 0.104 0.118 0.168 0.259 0.287 0.314 0.324 0.369 0.407 0.524 0.855 0.942 0.949 1.169 1.185 1.237 1.437 1.474 1.478 1.726 1.758 1.794 1.957 2.197 2.226 2.490 2.722 2.893 3.021 3.363 4.434 4.612 -------------------------------------------------------------- Ground-State Mulliken Net Atomic Charges Atom Charge (a.u.) ---------------------------------------- 1 C 0.130555 2 O -0.511692 3 H 0.172374 4 H 0.208763 ---------------------------------------- Sum of atomic charges = 0.000000 ----------------------------------------------------------------- Cartesian Multipole Moments ----------------------------------------------------------------- Charge (ESU x 10^10) 0.0000 Dipole Moment (Debye) X 3.7062 Y -0.0032 Z -0.0390 Tot 3.7064 Quadrupole Moments (Debye-Ang) XX -12.2193 XY 0.2145 YY -11.4010 XZ -0.1062 YZ -0.0015 ZZ -11.6210 Octapole Moments (Debye-Ang^2) XXX 2.0728 XXY 0.0741 XYY 1.4495 YYY 0.0924 XXZ -0.0217 XYZ 0.0177 YYZ -0.0222 XZZ 0.0877 YZZ -0.0057 ZZZ -0.0641 Hexadecapole Moments (Debye-Ang^3) XXXX -43.9914 XXXY 0.5183 XXYY -9.6823 XYYY 0.3982 YYYY -16.8555 XXXZ -0.2045 XXYZ -0.0028 XYYZ -0.0474 YYYZ -0.0008 XXZZ -9.0773 XYZZ 0.0813 YYZZ -4.8163 XZZZ -0.1303 YZZZ -0.0025 ZZZZ -10.0772 ----------------------------------------------------------------- Archival summary: 1\1\fluffy.usc.edu\SP\ProcedureUnspecified\6-31+G*\112\krylov\15Feb2011\0\\#,ProcedureUnspecified,6-31+G*,\\0,1\C\H,1,1.0869\H,1,1.09007,2,117.136\O,1,1.19092,2,121.916,3,179.96,0\\HF=-114.004289\\@ Total job time: 3.73s(wall), 3.72s(cpu) Tue Feb 15 07:43:57 2011 ************************************************************* * * * Thank you very much for using Q-Chem. Have a nice day. * * * ************************************************************* User input: 2 of 3 Welcome to Q-Chem A Quantum Leap Into The Future Of Chemistry Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko,S. V. Levchenko, D. P. O'Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khaliullin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Q-Chem, Version 3.1, Q-Chem, Inc., Pittsburgh, PA (2007). Additional authors for Version 3.1: Z. Gan, Y. Zhao, N. E. Schultz, D. Truhlar, E. Epifanovsky and M. Oana. Additional authors for Version 3.2: R. Baer, B. R. Brooks, D. Casanova, J.-D. Chai, C.-L. Cheng, C. Cramer, D. Crittenden, A. Ghysels, G. Hawkins, E. G. Hohenstein, C. Kelley, W. Kurlancheek, D. Liotard, E. Livshits, P. Manohar, A. Marenich, D. Neuhauser, R. Olson, M. A. Rohrdanz, K. S. Thanthiriwatte, A. J. W. Thom, V. Vanovschi, C. F. Williams, Q. Wu and Z.-Q. You. Intel X86 Linux Version Q-chem begins on Tue Feb 15 07:43:57 2011 Host: fluffy.usc.edu 0 theFileMan(): MAXOPENFILES=974 MAX_SUB_FILE_NUM=16 Maximum size of a physical file is 2.0 GB, maximum size of a tmp-file is 32.0 GB -------------------------------------------------------------- EFP input options: -------------------------------------------------------------- EFP_FRAGMENTS_ONLY = 0 : QM/EFP job EFP fragment - fragment interactions: EFP_ELEC = 1 : electrostatics is enabled EFP_POL = 1 : polarization is enabled EFP_EXREP = 1 : exchange-repulsion is enabled EFP_DISP = 1 : dispersion is enabled QM/EFP interactions: EFP_QM_ELEC = 1 : electrostatics is enabled EFP_QM_POL = 1 : polarization is enabled EFP_QM_EXREP = 0 : exchange-repulsion is disabled EFP/EFP screening: EFP_ELEC_DAMP = 2 : electrostatic damping using exponential formula for charges only if screening parameters are provided in the EFP input. EFP_DISP_DAMP = 1 : dispersion damping using Tang-Toennies damping, with a fixed parameter b=1.5. QM/EFP screening: EFP_QM_ELEC_DAMP = 0 : electrostatic damping is disabled -------------------------------------------------------------- At least one of the EFs is missing basis -> exchange repulsion will be disabled Finally everything over in PARseQInput -------------------------------------------------------------- User input: -------------------------------------------------------------- $comment excited states of formaldehyde in a presence of 6 EFP waters EOM-CCSD calculation $end $molecule 0 1 C1 1.0632450881806 2.0267971791743 0.4338879750526 O2 1.1154451117032 1.0798728186948 1.1542424552747 H3 1.0944666250874 3.0394904220684 0.8360468907200 H4 0.9836601903170 1.9241779934791 -0.6452234478151 $end $rem basis 6-31+G* exchange hf efp_fragments_only false purecart 2222 scf_convergence 8 correlation ccsd eom_ee_singlets 2 eom_ee_triplets 2 ccman2 false $end $efp_fragments water 1.45117729 -1.31271387 -0.39790305 -1.075756 2.378141 1.029199 water 1.38370965 0.22282733 -2.74327999 2.787663 1.446660 0.168420 water 4.35992117 -1.31285676 0.15919381 -1.674869 2.547933 -2.254831 water 4.06184149 2.79536141 0.05055916 -1.444143 0.750463 -2.291224 water 4.09898096 0.83731430 -1.93049301 2.518412 1.592607 -2.199818 water 3.96160175 0.71581837 2.05653146 0.825946 1.414384 0.966187 $end $efp_params fragment water o 0.0 0.0 0.118669999966 h 0.0 0.753987009657 -0.474680009759 h 0.0 -0.753987009657 -0.474680009759 mult 0.0 0.0 0.118669999966 8.00000 mult 0.0 0.753987009657 -0.474680009759 1.00000 mult 0.0 -0.753987009657 -0.474680009759 1.00000 mult 0.0 0.0 0.118669999966 -8.1265816511 0.0000000000 0.0000000000 -0.7941982205 -4.7523254414 -3.5909929131 -3.9050388551 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -1.9970132546 0.0000000000 -0.6091934659 0.0000000000 -0.7292400334 0.0000000000 0.0000000000 0.0000000000 mult 0.0 0.753987009657 -0.474680009759 -0.6378406008 0.0000000000 0.0888890416 -0.0522069961 -0.3833762140 -0.3738696207 -0.3690354428 0.0000000000 0.0000000000 -0.0073238838 0.0000000000 0.1295942783 -0.0580609838 0.0465199460 -0.0220014840 0.0000000000 -0.0148070246 0.0000000000 0.0396185757 0.0000000000 mult 0.0 -0.753987009657 -0.474680009759 -0.6378406008 0.0000000000 -0.0888890416 -0.0522069961 -0.3833762140 -0.3738696207 -0.3690354428 0.0000000000 0.0000000000 0.0073238838 0.0000000000 -0.1295942783 -0.0580609838 -0.0465199460 -0.0220014840 0.0000000000 -0.0148070246 0.0000000000 -0.0396185757 0.0000000000 mult 0.0 0.376993504829 -0.178005004923 -0.2988685737 0.0000000000 -0.2392382477 0.2876507384 -0.0596543627 0.0891290953 0.0434249504 0.0000000000 0.0000000000 -0.1071361440 0.0000000000 -0.6655595159 0.8701202039 -0.2044454491 0.2816085368 0.0000000000 0.3207025405 0.0000000000 -0.2373168434 0.0000000000 mult 0.0 -0.376993504829 -0.178005004923 -0.2988685737 0.0000000000 0.2392382477 0.2876507384 -0.0596543627 0.0891290953 0.0434249504 0.0000000000 0.0000000000 0.1071361440 0.0000000000 0.6655595159 0.8701202039 0.2044454491 0.2816085368 0.0000000000 0.3207025405 0.0000000000 0.2373168434 0.0000000000 pol -5.21133754815e-07 -0.397169419554 -0.212774686346 0.8148484263 2.8090500823 1.8872874419 0.0000025717 0.0000021879 1.4144626523 0.0000019255 0.0000016286 1.2432122571 pol -2.48078294331e-07 0.397169433313 -0.212774690315 0.8148483778 2.8090499070 1.8872872865 -0.0000012188 0.0000010362 -1.4144625242 -0.0000009166 0.0000007753 -1.2432121331 pol 0.265034098979 -1.1361435536e-07 0.259421015249 2.7133702541 1.4581392265 1.8762727378 -0.0000007201 1.0869698776 -0.0000010107 -0.0000005381 0.9796423596 -0.0000010226 pol -0.265033329767 9.98557468863e-08 0.259422395926 2.7133556615 1.4581450880 1.8762849392 -0.0000006328 -1.0869731232 0.0000008883 -0.0000004708 -0.9796447636 0.0000008986 $end -------------------------------------------------------------- ---------------------------------------------------- Standard Nuclear Orientation (Angstroms) I Atom X Y Z ---------------------------------------------------- 1 C 0.524512 0.000804 0.000092 2 O -0.666413 0.000723 -0.000022 3 H 1.085163 -0.934036 -0.000186 4 H 1.099066 0.923427 -0.000188 ---------------------------------------------------- Molecular Point Group C1 NOp = 1 Largest Abelian Subgroup C1 NOp = 1 Nuclear Repulsion Energy = 31.7046363845 hartrees There are 8 alpha and 8 beta electrons Q-Chem warning in module BasisType.C, line 1138: You are not using the predefined 5D/6D in this basis set. Requested basis set is 6-31+G(d) There are 14 shells and 42 basis functions Total memory of 1301MB is distributed as follows: QALLOC including MEM_STATIC uses 1301MB MEM_STATIC is set to 301MB CCMAN JOB total memory use is 1000MB Warning: actual memory use might exceed 1301MB Total QAlloc Memory Limit 1301 MB Mega-Array Size 295 MB MEM_STATIC part 301 MB Distance Matrix (Angstroms) C ( 1) O ( 2) H ( 3) O ( 2) 1.190924 H ( 3) 1.090071 1.985394 H ( 4) 1.086897 1.992058 1.857515 A cutoff of 1.0D-14 yielded 105 shell pairs There are 969 function pairs Smallest overlap matrix eigenvalue = 5.89E-03 Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01 Standard Electronic Orientation quadrupole field applied Nucleus-field energy = 0.0000000004 hartrees NEW_GEOM_ORIGIN 1 1 2.0528518 2 3.0428646 3 1.4206124 QCHEM ORIENT_MATRIX 1 2 3 1 -0.0437318 0.7951579 -0.6048235 2 -0.0593287 -0.6064012 -0.7929424 3 -0.9972801 0.0012066 0.0736947 Coordintates of atoms in the effective region (ANGSTROMS) O -1.620789 2.758337 -0.386474 H -1.533197 1.834740 -0.141818 H -1.948542 2.722908 -1.287520 O 1.074842 3.513977 -0.595304 H 0.135658 3.408149 -0.430094 H 1.242428 4.430349 -0.365656 O -2.041204 2.125936 -3.253286 H -2.728615 2.306232 -3.897894 H -2.032439 1.168307 -3.194722 O 1.179242 -0.397059 -2.931223 H 1.199124 0.547108 -3.100676 H 1.730477 -0.762635 -3.626244 O 0.951103 2.356343 -3.272193 H 1.142215 2.829102 -2.459459 H 0.008562 2.488350 -3.393646 O -1.704219 -0.634422 -2.857062 H -1.875731 -0.835225 -1.934662 H -0.751381 -0.717753 -2.932672 NEW_GEOM_ORIGIN 1 1 2.0528518 2 3.0428646 3 1.4206124 NCycle 0 Check the number of atoms 18 Nuclear - Fragment Charge Energy = 0.098207163812 Nuclear - Fragment Dipole Energy = 0.021618901810 Nuclear - Fragment Quadrupole Energy = 0.066717573900 Nuclear - Fragment Octupole Energy = -0.001293284283 Nuclear - Fragment Total Energy = 0.185250355239 Charge - Charge Energy = -0.022824839264 Charge - Dipole Energy = -0.019985614791 Charge - Quadrupole Energy = -0.021199607454 Charge - Octupole Energy = 0.001157887989 Dipole - Dipole Energy = -0.004909717732 Dipole - Quadrupole Energy = -0.005882006962 Quadrupole - Quadrupole Energy = -0.007606631675 Fragment - Fragment Total Energy = -0.081250529888 EFP Electrostatics Energy = 0.103999825351 EFP Polarization Energy EPol2 = -2.659525298324 Guess from superposition of atomic densities Warning: Energy on first SCF cycle will be non-variational A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS extrapolation SCF converges when DIIS error is below 1.0E-08 --------------------------------------- Cycle Energy DIIS Error --------------------------------------- 1 -108.9979754434 1.15E-01 2 -113.9185184847 1.81E-02 3 -113.9592772434 1.20E-02 4 -113.9929379267 1.95E-03 5 -114.0025397151 6.22E-04 6 -114.0026119909 1.59E-04 7 -114.0040051390 5.82E-05 8 -114.0042721068 1.61E-05 9 -114.0043125674 2.92E-06 10 -114.0042990797 6.67E-07 11 -114.0042905636 2.72E-07 12 -114.0042892464 1.16E-07 13 -114.0042887876 3.17E-08 14 -114.0042888051 5.76E-09 Convergence criterion met --------------------------------------- SCF time: CPU 1.64 s wall 1.66 s Summary of EFP interfragment interaction energies Electrostatics Energy = 0.103999825351 Exchange-Repulsion Energy = 0.000000000000 Polarization Energy = -0.009397416634 Dispersion Energy = 0.000000000000 Total Interfragment Energy = 0.094602408717 SCF energy in the final basis set = -114.0042888051 Total energy in the final basis set = -114.0042888051 ccman2 params structure: ccman1 = 1 ccman2 = 0 ccman2.capable = 1 ccman2.memory = 1000 ccman2.threads = 1 ccman2.ccd = 0 ccman2.ccsd = 1 ccman2.ccsd.i = 1 ccman2.ccsd.l = 0 ccman2.ccsd.t = 1 ccman2.ccsd.t.solver = diis ccman2.ccsd.t.diis.econv = 1e-08 ccman2.ccsd.t.diis.freq = 1 ccman2.ccsd.t.diis.max_overlap = 1 ccman2.ccsd.t.diis.maxiter = 100 ccman2.ccsd.t.diis.min_overlap = 1e-11 ccman2.ccsd.t.diis.size = 7 ccman2.ccsd.t.diis.start = 3 ccman2.ccsd.t.diis.tconv = 1e-08 ccman2.eomdip_ccsd = 0 ccman2.eomea_ccsd = 0 ccman2.eomee_ccsd = 1 ccman2.eomee_ccsd.rhfref = 1 ccman2.eomee_ccsd.rhfref.singlets = 1 ccman2.eomee_ccsd.rhfref.singlets.nirreps = 1 ccman2.eomee_ccsd.rhfref.singlets.1.r = 1 ccman2.eomee_ccsd.rhfref.singlets.1.r.irrep = 0 ccman2.eomee_ccsd.rhfref.singlets.1.r.nguess_doubles = 0 ccman2.eomee_ccsd.rhfref.singlets.1.r.nguess_singles = 2 ccman2.eomee_ccsd.rhfref.singlets.1.r.nroots = 2 ccman2.eomee_ccsd.rhfref.singlets.1.r.solver = davidson ccman2.eomee_ccsd.rhfref.singlets.1.r.spin = singlet ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.conv = 1e-06 ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.maxiter = 30 ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.maxsubspace = 60 ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.precond_start = 0 ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.thresh = 1e-08 ccman2.eomee_ccsd.rhfref.singlets.1.r.print.irrep = 0 ccman2.eomee_ccsd.rhfref.singlets.1.r.print.thresh_r1 = 0.5 ccman2.eomee_ccsd.rhfref.singlets.1.r.print.thresh_r2 = 0.1 ccman2.eomee_ccsd.rhfref.triplets = 1 ccman2.eomee_ccsd.rhfref.triplets.nirreps = 1 ccman2.eomee_ccsd.rhfref.triplets.1.r = 1 ccman2.eomee_ccsd.rhfref.triplets.1.r.irrep = 0 ccman2.eomee_ccsd.rhfref.triplets.1.r.nguess_doubles = 0 ccman2.eomee_ccsd.rhfref.triplets.1.r.nguess_singles = 2 ccman2.eomee_ccsd.rhfref.triplets.1.r.nroots = 2 ccman2.eomee_ccsd.rhfref.triplets.1.r.solver = davidson ccman2.eomee_ccsd.rhfref.triplets.1.r.spin = triplet ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.conv = 1e-06 ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.maxiter = 30 ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.maxsubspace = 60 ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.precond_start = 0 ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.thresh = 1e-08 ccman2.eomee_ccsd.rhfref.triplets.1.r.print.irrep = 0 ccman2.eomee_ccsd.rhfref.triplets.1.r.print.thresh_r1 = 0.5 ccman2.eomee_ccsd.rhfref.triplets.1.r.print.thresh_r2 = 0.1 ccman2.eomee_ccsd.uhfref = 0 ccman2.eomip_ccsd = 0 ccman2.eomsf_ccsd = 0 ccman2.gradient = 0 ccman2.hf = 1 ccman2.hf.symmetry = 0 ccman2.hf.unrestricted = 0 ccman2.hf.ri = 0 sizes.nalpha = 8 sizes.nbasis = 42 sizes.nbeta = 8 sizes.nlinbasis = 42 sizes.norbs_per_block = 16 sizes.nreordermos = 0 sizes.ns2 = 969 sizes.ns2car = 969 sizes.frozen.occ = 0 sizes.frozen.virt = 0 sizes.restr.occ = 0 sizes.restr.virt = 0 --------- ****************************************************** * C C M A N * * * * Anna I. Krylov * * C. David Sherrill * * Steven R. Gwaltney * * Edward F. C. Byrd * * June 2000 * * * * AND * * * * Sergey V. Levchenko * * Lyudmila V. Slipchenko * * Tao Wang * * Ana-Maria C. Cristian * * * * November 2003 * * * * AND * * * * Piotr A. Pieniazek * * C. Melania Oana * * E. Epifanovsky * * * * October 2007 * * * * * ****************************************************** Adjusting EOM_EE_STATES The orbitals are ordered and numbered as follows: Alpha orbitals: Number Energy Type Symmetry ANLMAN number Total number: 0 -20.604 AOCC A1 1A1 1 1 -11.351 AOCC A1 2A1 2 2 -1.435 AOCC A1 3A1 3 3 -0.878 AOCC A1 4A1 4 4 -0.711 AOCC A1 5A1 5 5 -0.672 AOCC A1 6A1 6 6 -0.560 AOCC A1 7A1 7 7 -0.454 AOCC A1 8A1 8 0 0.077 AVIRT A1 9A1 9 1 0.092 AVIRT A1 10A1 10 2 0.104 AVIRT A1 11A1 11 3 0.118 AVIRT A1 12A1 12 4 0.168 AVIRT A1 13A1 13 5 0.259 AVIRT A1 14A1 14 6 0.287 AVIRT A1 15A1 15 7 0.314 AVIRT A1 16A1 16 8 0.324 AVIRT A1 17A1 17 9 0.369 AVIRT A1 18A1 18 10 0.407 AVIRT A1 19A1 19 11 0.524 AVIRT A1 20A1 20 12 0.855 AVIRT A1 21A1 21 13 0.942 AVIRT A1 22A1 22 14 0.949 AVIRT A1 23A1 23 15 1.169 AVIRT A1 24A1 24 16 1.185 AVIRT A1 25A1 25 17 1.237 AVIRT A1 26A1 26 18 1.437 AVIRT A1 27A1 27 19 1.474 AVIRT A1 28A1 28 20 1.478 AVIRT A1 29A1 29 21 1.726 AVIRT A1 30A1 30 22 1.758 AVIRT A1 31A1 31 23 1.794 AVIRT A1 32A1 32 24 1.957 AVIRT A1 33A1 33 25 2.197 AVIRT A1 34A1 34 26 2.226 AVIRT A1 35A1 35 27 2.490 AVIRT A1 36A1 36 28 2.722 AVIRT A1 37A1 37 29 2.893 AVIRT A1 38A1 38 30 3.021 AVIRT A1 39A1 39 31 3.363 AVIRT A1 40A1 40 32 4.434 AVIRT A1 41A1 41 33 4.612 AVIRT A1 42A1 42 EOM_EE_SINGLETS = 2 EOM_EE_TRIPLETS = 2 blck_tnsr_buffsz = 904 ccjobtype = properties ccman2 = 0 do_efp = 1 do_ri = 0 eomcorr = sd print_lvl = 1 refcorr = ccsd test_mode = 0 threads = 1 tmp_maxbuffsz = 96 unrestricted = 0 ccprop.calc_soc = 0 ccprop.ccref_prop = 1 ccprop.do_dyson = 0 ccprop.do_dyson_ee = 0 ccprop.eom_prop = 1 ccprop.eom_prop_1e = 1 ccprop.eom_prop_2e = 0 ccprop.fullresponse = 0 ccprop.plot_densities = 0 ccprop.ref_prop_1e = 1 ccprop.ref_prop_2e = 0 ccprop.trans_prop = 0 ccsd.dOV_threshold = 0 ccsd.diis_freq = 1 ccsd.diis_max_overlap = 1 ccsd.diis_min_overlap = 1e-11 ccsd.diis_size = 7 ccsd.diis_start = 3 ccsd.energy_convergence = 1e-08 ccsd.maxiter = 100 ccsd.restart = 0 ccsd.saveampl = 0 ccsd.scale_amp = 1 ccsd.solver = diis ccsd.t_convergence = 1e-08 ccsd.z_convergence = 1e-08 eom.convergence = 1e-06 eom.do_fake_ipea = 0 eom.dthreshold = 1e-06 eom.filter_ipea = 0 eom.maxiter = 30 eom.maxvectors = 60 eom.nguess_doubles = 0 eom.nguess_singles = 0 eom.preconv_doubles = 0 eom.preconv_sd = 0 eom.preconv_singles = 0 eom.use_exdiag = 0 mgc.amodel = 0 mgc.canonize = 0 mgc.canonize_final = 0 mgc.canonize_freq = 50 mgc.dOV_threshold = 0 mgc.diis = 0 mgc.diis12_switch = 1e-05 mgc.diis_freq = 2 mgc.diis_max_overlap = 1 mgc.diis_min_overlap = 1e-11 mgc.diis_size = 7 mgc.diis_start = 2 mgc.do_ed_ccd = 0 mgc.do_qccd = 0 mgc.energy_convergence = 1e-08 mgc.hess_threshold = 0.01 mgc.iterate_ov = 0 mgc.maxiter = 100 mgc.maxtrank = 0 mgc.mgc_ampread = 0 mgc.mgc_amps = 2 mgc.mgc_ampscale = 0 mgc.mgc_cc_gvb_guess = 0 mgc.mgc_create_dm = 0 mgc.mgc_eom = 0 mgc.mgc_frzn_core = 0 mgc.mgc_gvb_n_pairs = 0 mgc.mgc_ip = 0 mgc.mgc_localinter = 0 mgc.mgc_localints = 1 mgc.mgc_oo_type = 0 mgc.mgc_ph = 0 mgc.mgc_renorm = 0 mgc.mgc_skip_ae = 0 mgc.mgc_write_ints = 0 mgc.nlpairs = 2 mgc.preconv_frozen = 0 mgc.preconv_t2z = 0 mgc.preconv_t2z_each = 0 mgc.reset_theta = 15 mgc.restart = 0 mgc.saveampl = 0 mgc.scale_amp = 1 mgc.solver = diis mgc.t_convergence = 1e-08 mgc.theta_convergence = 0.0001 mgc.theta_grad_convergence = 0.0001 mgc.theta_grad_threshold = 0.01 mgc.theta_stepsize = 1 mgc.turn_on_qccd = 0.01 mgc.z_convergence = 1e-08 ooccd.canonize_final = 0 ooccd.canonize_freq = 50 ooccd.dOV_threshold = 0 ooccd.diis = 0 ooccd.diis12_switch = 1e-05 ooccd.diis_freq = 2 ooccd.diis_max_overlap = 1 ooccd.diis_min_overlap = 1e-11 ooccd.diis_size = 7 ooccd.diis_start = 2 ooccd.do_ed_ccd = 0 ooccd.do_qccd = 0 ooccd.energy_convergence = 1e-08 ooccd.hess_threshold = 0.01 ooccd.iterate_ov = 0 ooccd.maxiter = 100 ooccd.preconv_frozen = 0 ooccd.preconv_t2z = 0 ooccd.preconv_t2z_each = 0 ooccd.reset_theta = 15 ooccd.restart = 0 ooccd.saveampl = 0 ooccd.scale_amp = 1 ooccd.solver = diis ooccd.t_convergence = 1e-08 ooccd.theta_convergence = 0.0001 ooccd.theta_grad_convergence = 0.0001 ooccd.theta_grad_threshold = 0.01 ooccd.theta_stepsize = 1 ooccd.turn_on_qccd = 0.01 ooccd.z_convergence = 1e-08 orbitals.canonize = 1 orbitals.do_fno = 0 orbitals.mp2_grad = 0 orbitals.mp2no_guess = 0 orbitals.reorthogonalize_mo = 0 orbitals.restart_no_scf = 0 orbitals.restricted_amplitudes = 1 orbitals.restricted_triples = 0 pt_corr.incl_core_corr = 1 pt_corr.incl_virt_corr = 1 pt_corr.sd_corr_only = 0 solvent_model.cc_solvent = 0 svd.analyze_t2 = 0 svd.d1_d2_diag = 0 svd.energy_decomp = 0 svd.svd_algorithm = 1 svd.svd_decompose_geminals = 0 svd.svd_first_geminal = 0 svd.svd_incl_singles = 1 svd.svd_n_values = 1 svd.svd_plot_geminals = 0 svd.t2_lowrank = 0 MOLECULAR PARAMETERS: ORB SYMM INFO: POINT GROUP=C1 NIRREPS = 1 MOL ORB= 42 IRREPS = A1 ORBSPI = 42 DOCC = 8 SOCC = 0 FDOCC = 0 RDOCC = 0 AAOCC = 8 BAOCC = 8 AAVIRT = 34 BAVIRT = 34 RUOCC = 0 FUOCC = 0 IRREP MULT TABLE: 0 ORBSYM ALPHA= A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 ORBSYM BETA = A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 BASIS ORBS = 42 MOL ORBS = 42 NAUXBASIS = 0 FROZEN OCC = 0 FROZEN VIR = 0 CORR ORBS = 42 CORR SP ORBS = 84 NUM ALP ELEC = 8 NUM BET ELEC = 8 NUM ALP EXPL = 8 NUM BET EXPL = 8 NUM SO OCC = 16 NUM SO VIR = 68 NUM RESTR DOCC= 0 NUM RESTR DVIRT= 0 ORBS PER BLCK = 16 RESTRICTED_REF = 1 BLOCKING PARAMETERS: NUM ROCC BLOCKS = 0 NUM AOCC BLOCKS= 1 NUM AVIRT BLOCKS= 3 NUM RVIRT BLOCKS= 0 ORBITALS/BLOCK = 8 8 12 11 11 12 11 11 BIRREP = A1 A1 A1 A1 A1 A1 A1 A1 EHF = -114.004288774 EMP2 = -114.313124559 Beginning CC iterations Itr|Var|D|Energy |Delta_E|Delta_t|Comments 1| CC|-| -114.313630265|5.1E-04|1.2E-01| 2| CC|-| -114.323928484|1.0E-02|4.6E-02| 3| CC|-| -114.324270806|3.4E-04|1.9E-02| 4| CC|+| -114.325481191|1.2E-03|9.8E-03| 5| CC|+| -114.325948826|4.7E-04|2.0E-03| 6| CC|+| -114.325966568|1.8E-05|6.3E-04| 7| CC|+| -114.325964683|1.9E-06|2.1E-04| 8| CC|+| -114.325964766|8.3E-08|7.4E-05| 9| CC|+| -114.325965339|5.7E-07|3.1E-05| 10| CC|+| -114.325965348|8.8E-09|2.0E-05| 11| CC|+| -114.325965318|2.9E-08|1.1E-05| 12| CC|+| -114.325965329|1.0E-08|5.0E-06| 13| CC|+| -114.325965303|2.6E-08|1.5E-06| 14| CC|+| -114.325965321|1.7E-08|5.8E-07| 15| CC|+| -114.325965314|6.3E-09|2.5E-07| 16| CC|+| -114.325965313|8.7E-10|9.6E-08| 17| CC|+| -114.325965312|1.2E-09|3.9E-08| 18| CC|+| -114.325965311|7.4E-10|1.5E-08| 19| CC|+| -114.325965311|9.5E-11|7.3E-09| Calculation converged, 19 iterations Beginning Lambda iterations Itr|Var|D|Delta_L|Comments 1|Lam|-|4.1E-02| 2|Lam|-|1.5E-02| 3|Lam|-|5.3E-03| 4|Lam|+|2.5E-03| 5|Lam|+|5.4E-04| 6|Lam|+|2.2E-04| 7|Lam|+|5.9E-05| 8|Lam|+|2.1E-05| 9|Lam|+|7.8E-06| 10|Lam|+|4.8E-06| 11|Lam|+|2.8E-06| 12|Lam|+|1.3E-06| 13|Lam|+|4.2E-07| 14|Lam|+|1.4E-07| 15|Lam|+|5.9E-08| 16|Lam|+|2.3E-08| 17|Lam|+|8.6E-09| Calculation converged, 17 iterations WARNING: density has been written in density file Dipole moment x y z Total -1.290055057 0.003194910 0.015644563 a.u. |mu| = 1.290153871 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 36.349540836 14.815783766 8.686035288 a.u. Total = 59.851359891 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.003900929 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.003884385 Hartree Total = dE1 + dE2 = -0.000016544 Hartree = -0.0005 eV Ene with polarization correction= -114.325981856 hartree Largest T amplitudes Largest singles amplitudes: Value i -> a 0.0336 6( A1) B -> 4( A1) B 0.0336 6( A1) A -> 4( A1) A 0.0202 6( A1) B -> 0( A1) B 0.0202 6( A1) A -> 0( A1) A 0.0152 7( A1) B -> 6( A1) B Largest doubles amplitudes: Value i j -> a b -0.0490 6( A1) A, 6( A1) B -> 4( A1) A, 4( A1) B -0.0340 6( A1) A, 6( A1) B -> 0( A1) A, 4( A1) B -0.0340 6( A1) A, 6( A1) B -> 4( A1) A, 0( A1) B -0.0276 6( A1) A, 6( A1) B -> 0( A1) A, 0( A1) B -0.0252 7( A1) A, 7( A1) B -> 10( A1) A, 10( A1) B EHF = -114.004288774 EMP2 = -114.313124559 Correlation Energy = -0.321676538 CCSD Total Energy = -114.325965311 CCSD or (V)OO-CCD job: CPU 13.32 s wall 13.63 s WARNING: this is QM/EFP job! Energies of the excited states are modified by the polarization correction due to EFP induced dipoles. Check for the total excited state energies in PROPERTIES output. Adjusting EOM_EE_STATES DOING EOM-CCSD CALCULATIONS Doubles diagonal is not filtered. SIZE OF T2 = 1.3 MB BLCK_TNSR_BUFFSZ=904 INCORE=514 SOLVE EOM-CCSD EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF A1 IRREP Singles guess formation using CSF: State 1: 7 -> 0 ( 0.6002) State 2: 7 -> 1 ( 0.6095) 2 singly-excited guess vectors generated PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE: NROOTS = 2 MAX VECTORS = 60 MAXITER = 30 CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06 SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=514 Itr|ConvR|ResNormR|NVecs|Comments 0| 0 |2.0E-01 | 2 | 1| 0 |2.6E-02 | 4 | 2| 0 |1.0E-02 | 6 | 3| 0 |2.8E-03 | 8 | 4| 0 |4.9E-04 | 10 | 5| 0 |1.3E-04 | 12 | 6| 0 |4.7E-05 | 14 | 7| 0 |1.4E-05 | 16 | 8| 1 |5.1E-06 | 18 | 9| 1 |1.8E-06 | 19 | 10| 1 |7.9E-07 | 20 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 3.51E-07; ||Res||=1.19E-06 11| 2 |3.6E-07 | 21 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 11 ITERATIONS Excitation energies, hartree 0 0 0.163358 1 0.281490 2 lowest LOWSPIN roots of symmetry A1: Root 1 Conv-d yes Tot Ene= -114.162606913 hartree (Ex Ene 4.4452 eV), U1^2=0.930502, U2^2=0.069498 ||Res||=3.6E-07 Right U1: Value i -> a 0.4121 7( A1) B -> 4( A1) B 0.4121 7( A1) A -> 4( A1) A 0.3876 7( A1) B -> 0( A1) B 0.3876 7( A1) A -> 0( A1) A Root 2 Conv-d yes Tot Ene= -114.044475049 hartree (Ex Ene 7.6597 eV), U1^2=0.938171, U2^2=0.061829 ||Res||=3.6E-07 Right U1: Value i -> a -0.4876 7( A1) B -> 1( A1) B -0.4876 7( A1) A -> 1( A1) A 0.4271 7( A1) B -> 0( A1) B 0.4271 7( A1) A -> 0( A1) A CALCULATING LEFT VECTORS: Re-orthogonalize vecs Itr|ConvR|ResNormR|NVecs|Comments 0| 0 |9.8E-03 | 2 | 1| 0 |5.2E-04 | 4 | 2| 0 |7.5E-05 | 6 | 3| 0 |8.2E-06 | 8 | 4| 0 |1.7E-06 | 10 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 2.96E-07; ||Res||=1.79E-06 NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 4.95E-07; ||Res||=1.63E-06 5| 2 |3.0E-07 | 12 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 5 ITERATIONS Excitation energies, hartree 0 0 0.163356 1 0.281488 Re-orthogonalize vecs Biorthogonalize left and right vectors Negative norm is detected for vector 0: NORM=-0.998855 CALCULATE LEFT AND RIGHT VECTORS: Itr|ConvR|ConvL|ResNormR|ResNormL|NVecs|Lock|Comments 0| 2 | 2 |3.6E-07 |3.0E-07 | 2 | 2 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 0 ITERATIONS Excitation energies, hartree 0 0 0.163356 1 0.281488 SIZE OF T2 = 1.3 MB BLCK_TNSR_BUFFSZ=904 INCORE=514 SOLVE EOM-CCSD EQUATIONS FOR RIGHT VECTORS of HIGHSPIN STATES OF A1 IRREP Singles guess formation using CSF: State 1: 7 -> 0 ( 0.6002) State 2: 7 -> 1 ( 0.6095) 2 singly-excited guess vectors generated PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE: NROOTS = 2 MAX VECTORS = 60 MAXITER = 30 CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06 SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=514 Itr|ConvR|ResNormR|NVecs|Comments 0| 0 |2.0E-01 | 2 | 1| 0 |2.9E-02 | 4 | 2| 0 |1.0E-02 | 6 | 3| 0 |2.3E-03 | 8 | 4| 0 |4.0E-04 | 10 | 5| 0 |1.3E-04 | 12 | 6| 0 |5.8E-05 | 14 | 7| 0 |1.8E-05 | 16 | 8| 1 |6.5E-06 | 18 | 9| 1 |2.7E-06 | 19 | 10| 1 |1.3E-06 | 20 | 11| 1 |7.1E-07 | 21 | 12| 1 |7.4E-07 | 22 | 13| 1 |2.2E-06 | 23 | 14| 1 |1.1E-02 | 24 | 15| 1 |4.9E-03 | 25 | 16| 1 |1.2E-03 | 26 | 17| 1 |3.4E-04 | 27 | 18| 1 |9.2E-05 | 28 | 19| 1 |2.0E-05 | 29 | 20| 1 |4.4E-06 | 30 | 21| 1 |1.1E-06 | 31 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 3.81E-07; ||Res||=1.89E-06 22| 2 |3.7E-07 | 32 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 22 ITERATIONS Excitation energies, hartree 0 0 0.149067 1 0.241623 2 lowest HIGHSPIN roots of symmetry A1: Root 1 Conv-d yes Tot Ene= -114.176897948 hartree (Ex Ene 4.0563 eV), U1^2=0.946609, U2^2=0.053391 ||Res||=2.8E-07 Right U1: Value i -> a 0.4083 7( A1) B -> 4( A1) B -0.4083 7( A1) A -> 4( A1) A 0.3898 7( A1) B -> 0( A1) B -0.3898 7( A1) A -> 0( A1) A Root 2 Conv-d yes Tot Ene= -114.084342774 hartree (Ex Ene 6.5749 eV), U1^2=0.969550, U2^2=0.030450 ||Res||=4.5E-07 Right U1: Value i -> a 0.4298 6( A1) B -> 4( A1) B -0.4298 6( A1) A -> 4( A1) A 0.3731 6( A1) B -> 0( A1) B -0.3731 6( A1) A -> 0( A1) A CALCULATING LEFT VECTORS: Re-orthogonalize vecs Itr|ConvR|ResNormR|NVecs|Comments 0| 0 |7.7E-03 | 2 | 1| 0 |3.7E-04 | 4 | 2| 0 |4.3E-05 | 6 | 3| 0 |3.9E-06 | 8 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 4.46E-07; ||Res||=2.16E-06 4| 1 |7.4E-07 | 10 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 1.55E-07; ||Res||=1.17E-06 5| 2 |2.2E-07 | 11 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 5 ITERATIONS Excitation energies, hartree 0 0 0.149065 1 0.241623 Re-orthogonalize vecs Biorthogonalize left and right vectors Negative norm is detected for vector 1: NORM=-0.999326 CALCULATE LEFT AND RIGHT VECTORS: Itr|ConvR|ConvL|ResNormR|ResNormL|NVecs|Lock|Comments 0| 2 | 2 |3.7E-07 |2.2E-07 | 2 | 2 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 0 ITERATIONS Excitation energies, hartree 0 0 0.149065 1 0.241623 EOM-CCSD PROPERTIES FOR LOWSPIN 1/A1 TRANSITION: Dipole moment x y z Total -0.851320424 0.006423955 0.065371643 a.u. |mu| = 0.853850797 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 36.209421943 13.697225429 10.400868634 a.u. Total = 60.307516006 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.020791598 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.020226026 Hartree Total = dE1 + dE2 = -0.000565573 Hartree = -0.0154 eV Tot Ene with polarization correction= -114.163174958 hartree (Ex Ene 4.430 eV) EOM-CCSD PROPERTIES FOR LOWSPIN 2/A1 TRANSITION: Dipole moment x y z Total -2.188355135 -0.382893903 0.295129811 a.u. |mu| = 2.241117477 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 39.737352902 21.712198777 17.009533496 a.u. Total = 78.459085175 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.071740277 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.070766855 Hartree Total = dE1 + dE2 = -0.000973422 Hartree = -0.0265 eV Tot Ene with polarization correction= -114.045450482 hartree (Ex Ene 7.633 eV) EOM-CCSD PROPERTIES FOR HIGHSPIN 1/A1 TRANSITION: Dipole moment x y z Total -0.819693460 0.006901750 0.068335154 a.u. |mu| = 0.822565922 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 36.069941881 13.669087433 10.449144483 a.u. Total = 60.188173797 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.020980508 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.020359781 Hartree Total = dE1 + dE2 = -0.000620727 Hartree = -0.0169 eV Tot Ene with polarization correction= -114.177520709 hartree (Ex Ene 4.039 eV) EOM-CCSD PROPERTIES FOR HIGHSPIN 2/A1 TRANSITION: Dipole moment x y z Total -0.591769870 -0.000627339 0.039978522 a.u. |mu| = 0.593119090 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 36.873841552 14.830903269 9.020946905 a.u. Total = 60.725691726 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.020939010 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.020431266 Hartree Total = dE1 + dE2 = -0.000507743 Hartree = -0.0138 eV Tot Ene with polarization correction= -114.084850374 hartree (Ex Ene 6.561 eV) EOM-CCSD job: CPU 35.51 s wall 35.54 s CCMAN JOB: ALL CPU 48.83 s wall 49.18 s Analysis of SCF Wavefunction -------------------------------------------------------------- Orbital Energies (a.u.) -------------------------------------------------------------- Alpha MOs -- Occupied -- -20.604 -11.351 -1.435 -0.878 -0.711 -0.672 -0.560 -0.454 -- Virtual -- 0.077 0.092 0.104 0.118 0.168 0.259 0.287 0.314 0.324 0.369 0.407 0.524 0.855 0.942 0.949 1.169 1.185 1.237 1.437 1.474 1.478 1.726 1.758 1.794 1.957 2.197 2.226 2.490 2.722 2.893 3.021 3.363 4.434 4.612 -------------------------------------------------------------- Ground-State Mulliken Net Atomic Charges Atom Charge (a.u.) ---------------------------------------- 1 C 0.050665 2 O -0.423612 3 H 0.168219 4 H 0.204728 ---------------------------------------- Sum of atomic charges = 0.000000 ----------------------------------------------------------------- Cartesian Multipole Moments ----------------------------------------------------------------- Charge (ESU x 10^10) 0.0000 Dipole Moment (Debye) X 3.2790 Y -0.0081 Z -0.0398 Tot 3.2792 Quadrupole Moments (Debye-Ang) XX -12.4396 XY 0.2271 YY -11.6415 XZ -0.1137 YZ -0.0036 ZZ -11.6830 Octapole Moments (Debye-Ang^2) XXX 1.7903 XXY 0.0698 XYY 1.3584 YYY 0.0893 XXZ -0.0220 XYZ 0.0196 YYZ -0.0241 XZZ -0.1365 YZZ -0.0098 ZZZ -0.0715 Hexadecapole Moments (Debye-Ang^3) XXXX -45.5322 XXXY 0.5643 XXYY -10.3054 XYYY 0.4445 YYYY -17.9750 XXXZ -0.2259 XXYZ -0.0059 XYYZ -0.0521 YYYZ -0.0028 XXZZ -9.3081 XYZZ 0.0916 YYZZ -5.0162 XZZZ -0.1454 YZZZ -0.0047 ZZZZ -10.3106 ----------------------------------------------------------------- Archival summary: 1\1\fluffy.usc.edu\SP\ProcedureUnspecified\6-31+G*\112\krylov\15Feb2011\0\\#,ProcedureUnspecified,6-31+G*,\\0,1\C\H,1,1.0869\H,1,1.09007,2,117.136\O,1,1.19092,2,121.916,3,179.96,0\\HF=-114.004289\\@ Total job time: 51.03s(wall), 50.65s(cpu) Tue Feb 15 07:44:48 2011 ************************************************************* * * * Thank you very much for using Q-Chem. Have a nice day. * * * ************************************************************* User input: 3 of 3 Welcome to Q-Chem A Quantum Leap Into The Future Of Chemistry Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko,S. V. Levchenko, D. P. O'Neill, R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khaliullin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Q-Chem, Version 3.1, Q-Chem, Inc., Pittsburgh, PA (2007). Additional authors for Version 3.1: Z. Gan, Y. Zhao, N. E. Schultz, D. Truhlar, E. Epifanovsky and M. Oana. Additional authors for Version 3.2: R. Baer, B. R. Brooks, D. Casanova, J.-D. Chai, C.-L. Cheng, C. Cramer, D. Crittenden, A. Ghysels, G. Hawkins, E. G. Hohenstein, C. Kelley, W. Kurlancheek, D. Liotard, E. Livshits, P. Manohar, A. Marenich, D. Neuhauser, R. Olson, M. A. Rohrdanz, K. S. Thanthiriwatte, A. J. W. Thom, V. Vanovschi, C. F. Williams, Q. Wu and Z.-Q. You. Intel X86 Linux Version Q-chem begins on Tue Feb 15 07:44:49 2011 Host: fluffy.usc.edu 0 theFileMan(): MAXOPENFILES=974 MAX_SUB_FILE_NUM=16 Maximum size of a physical file is 2.0 GB, maximum size of a tmp-file is 32.0 GB -------------------------------------------------------------- EFP input options: -------------------------------------------------------------- EFP_FRAGMENTS_ONLY = 0 : QM/EFP job EFP fragment - fragment interactions: EFP_ELEC = 1 : electrostatics is enabled EFP_POL = 1 : polarization is enabled EFP_EXREP = 1 : exchange-repulsion is enabled EFP_DISP = 1 : dispersion is enabled QM/EFP interactions: EFP_QM_ELEC = 1 : electrostatics is enabled EFP_QM_POL = 1 : polarization is enabled EFP_QM_EXREP = 0 : exchange-repulsion is disabled EFP/EFP screening: EFP_ELEC_DAMP = 2 : electrostatic damping using exponential formula for charges only if screening parameters are provided in the EFP input. EFP_DISP_DAMP = 1 : dispersion damping using Tang-Toennies damping, with a fixed parameter b=1.5. QM/EFP screening: EFP_QM_ELEC_DAMP = 0 : electrostatic damping is disabled -------------------------------------------------------------- At least one of the EFs is missing basis -> exchange repulsion will be disabled Finally everything over in PARseQInput -------------------------------------------------------------- User input: -------------------------------------------------------------- $comment excited states of formaldehyde in a presence of 6 EFP waters EOM-CCSD calculation with FNO and frozen core Attention! EFP keyword SHOULD be present in frozen core or FNO jobs! $end $molecule 0 1 C1 1.0632450881806 2.0267971791743 0.4338879750526 O2 1.1154451117032 1.0798728186948 1.1542424552747 H3 1.0944666250874 3.0394904220684 0.8360468907200 H4 0.9836601903170 1.9241779934791 -0.6452234478151 $end $rem basis 6-31+G* exchange hf efp_fragments_only false purecart 2222 scf_convergence 8 correlation ccsd eom_ee_singlets 2 eom_ee_triplets 2 n_frozen_core 2 CC_fno_thresh 9900 EFP 1 ccman2 false $end $efp_fragments water 1.45117729 -1.31271387 -0.39790305 -1.075756 2.378141 1.029199 water 1.38370965 0.22282733 -2.74327999 2.787663 1.446660 0.168420 water 4.35992117 -1.31285676 0.15919381 -1.674869 2.547933 -2.254831 water 4.06184149 2.79536141 0.05055916 -1.444143 0.750463 -2.291224 water 4.09898096 0.83731430 -1.93049301 2.518412 1.592607 -2.199818 water 3.96160175 0.71581837 2.05653146 0.825946 1.414384 0.966187 $end $efp_params fragment water o 0.0 0.0 0.118669999966 h 0.0 0.753987009657 -0.474680009759 h 0.0 -0.753987009657 -0.474680009759 mult 0.0 0.0 0.118669999966 8.00000 mult 0.0 0.753987009657 -0.474680009759 1.00000 mult 0.0 -0.753987009657 -0.474680009759 1.00000 mult 0.0 0.0 0.118669999966 -8.1265816511 0.0000000000 0.0000000000 -0.7941982205 -4.7523254414 -3.5909929131 -3.9050388551 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -1.9970132546 0.0000000000 -0.6091934659 0.0000000000 -0.7292400334 0.0000000000 0.0000000000 0.0000000000 mult 0.0 0.753987009657 -0.474680009759 -0.6378406008 0.0000000000 0.0888890416 -0.0522069961 -0.3833762140 -0.3738696207 -0.3690354428 0.0000000000 0.0000000000 -0.0073238838 0.0000000000 0.1295942783 -0.0580609838 0.0465199460 -0.0220014840 0.0000000000 -0.0148070246 0.0000000000 0.0396185757 0.0000000000 mult 0.0 -0.753987009657 -0.474680009759 -0.6378406008 0.0000000000 -0.0888890416 -0.0522069961 -0.3833762140 -0.3738696207 -0.3690354428 0.0000000000 0.0000000000 0.0073238838 0.0000000000 -0.1295942783 -0.0580609838 -0.0465199460 -0.0220014840 0.0000000000 -0.0148070246 0.0000000000 -0.0396185757 0.0000000000 mult 0.0 0.376993504829 -0.178005004923 -0.2988685737 0.0000000000 -0.2392382477 0.2876507384 -0.0596543627 0.0891290953 0.0434249504 0.0000000000 0.0000000000 -0.1071361440 0.0000000000 -0.6655595159 0.8701202039 -0.2044454491 0.2816085368 0.0000000000 0.3207025405 0.0000000000 -0.2373168434 0.0000000000 mult 0.0 -0.376993504829 -0.178005004923 -0.2988685737 0.0000000000 0.2392382477 0.2876507384 -0.0596543627 0.0891290953 0.0434249504 0.0000000000 0.0000000000 0.1071361440 0.0000000000 0.6655595159 0.8701202039 0.2044454491 0.2816085368 0.0000000000 0.3207025405 0.0000000000 0.2373168434 0.0000000000 pol -5.21133754815e-07 -0.397169419554 -0.212774686346 0.8148484263 2.8090500823 1.8872874419 0.0000025717 0.0000021879 1.4144626523 0.0000019255 0.0000016286 1.2432122571 pol -2.48078294331e-07 0.397169433313 -0.212774690315 0.8148483778 2.8090499070 1.8872872865 -0.0000012188 0.0000010362 -1.4144625242 -0.0000009166 0.0000007753 -1.2432121331 pol 0.265034098979 -1.1361435536e-07 0.259421015249 2.7133702541 1.4581392265 1.8762727378 -0.0000007201 1.0869698776 -0.0000010107 -0.0000005381 0.9796423596 -0.0000010226 pol -0.265033329767 9.98557468863e-08 0.259422395926 2.7133556615 1.4581450880 1.8762849392 -0.0000006328 -1.0869731232 0.0000008883 -0.0000004708 -0.9796447636 0.0000008986 $end -------------------------------------------------------------- ---------------------------------------------------- Standard Nuclear Orientation (Angstroms) I Atom X Y Z ---------------------------------------------------- 1 C 0.524512 0.000804 0.000092 2 O -0.666413 0.000723 -0.000022 3 H 1.085163 -0.934036 -0.000186 4 H 1.099066 0.923427 -0.000188 ---------------------------------------------------- Molecular Point Group C1 NOp = 1 Largest Abelian Subgroup C1 NOp = 1 Nuclear Repulsion Energy = 31.7046363845 hartrees There are 8 alpha and 8 beta electrons Q-Chem warning in module BasisType.C, line 1138: You are not using the predefined 5D/6D in this basis set. Requested basis set is 6-31+G(d) There are 14 shells and 42 basis functions Total memory of 1301MB is distributed as follows: QALLOC including MEM_STATIC uses 1301MB MEM_STATIC is set to 301MB CCMAN JOB total memory use is 1000MB Warning: actual memory use might exceed 1301MB Total QAlloc Memory Limit 1301 MB Mega-Array Size 295 MB MEM_STATIC part 301 MB Distance Matrix (Angstroms) C ( 1) O ( 2) H ( 3) O ( 2) 1.190924 H ( 3) 1.090071 1.985394 H ( 4) 1.086897 1.992058 1.857515 A cutoff of 1.0D-14 yielded 105 shell pairs There are 969 function pairs Smallest overlap matrix eigenvalue = 5.89E-03 Scale SEOQF with 1.000000e-01/1.000000e-01/1.000000e-01 Standard Electronic Orientation quadrupole field applied Nucleus-field energy = 0.0000000004 hartrees NEW_GEOM_ORIGIN 1 1 2.0528518 2 3.0428646 3 1.4206124 QCHEM ORIENT_MATRIX 1 2 3 1 -0.0437318 0.7951579 -0.6048235 2 -0.0593287 -0.6064012 -0.7929424 3 -0.9972801 0.0012066 0.0736947 Coordintates of atoms in the effective region (ANGSTROMS) O -1.620789 2.758337 -0.386474 H -1.533197 1.834740 -0.141818 H -1.948542 2.722908 -1.287520 O 1.074842 3.513977 -0.595304 H 0.135658 3.408149 -0.430094 H 1.242428 4.430349 -0.365656 O -2.041204 2.125936 -3.253286 H -2.728615 2.306232 -3.897894 H -2.032439 1.168307 -3.194722 O 1.179242 -0.397059 -2.931223 H 1.199124 0.547108 -3.100676 H 1.730477 -0.762635 -3.626244 O 0.951103 2.356343 -3.272193 H 1.142215 2.829102 -2.459459 H 0.008562 2.488350 -3.393646 O -1.704219 -0.634422 -2.857062 H -1.875731 -0.835225 -1.934662 H -0.751381 -0.717753 -2.932672 NEW_GEOM_ORIGIN 1 1 2.0528518 2 3.0428646 3 1.4206124 NCycle 0 Check the number of atoms 18 Nuclear - Fragment Charge Energy = 0.098207163812 Nuclear - Fragment Dipole Energy = 0.021618901810 Nuclear - Fragment Quadrupole Energy = 0.066717573900 Nuclear - Fragment Octupole Energy = -0.001293284283 Nuclear - Fragment Total Energy = 0.185250355239 Charge - Charge Energy = -0.022824839264 Charge - Dipole Energy = -0.019985614791 Charge - Quadrupole Energy = -0.021199607454 Charge - Octupole Energy = 0.001157887989 Dipole - Dipole Energy = -0.004909717732 Dipole - Quadrupole Energy = -0.005882006962 Quadrupole - Quadrupole Energy = -0.007606631675 Fragment - Fragment Total Energy = -0.081250529888 EFP Electrostatics Energy = 0.103999825351 EFP Polarization Energy EPol2 = -2.659525298324 Guess from superposition of atomic densities Warning: Energy on first SCF cycle will be non-variational A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS extrapolation SCF converges when DIIS error is below 1.0E-08 --------------------------------------- Cycle Energy DIIS Error --------------------------------------- 1 -108.9979754434 1.15E-01 2 -113.9185184847 1.81E-02 3 -113.9592772434 1.20E-02 4 -113.9929379267 1.95E-03 5 -114.0025397151 6.22E-04 6 -114.0026119909 1.59E-04 7 -114.0040051390 5.82E-05 8 -114.0042721068 1.61E-05 9 -114.0043125674 2.92E-06 10 -114.0042990797 6.67E-07 11 -114.0042905636 2.72E-07 12 -114.0042892464 1.16E-07 13 -114.0042887876 3.17E-08 14 -114.0042888051 5.76E-09 Convergence criterion met --------------------------------------- SCF time: CPU 1.64 s wall 1.64 s Summary of EFP interfragment interaction energies Electrostatics Energy = 0.103999825351 Exchange-Repulsion Energy = 0.000000000000 Polarization Energy = -0.009397416634 Dispersion Energy = 0.000000000000 Total Interfragment Energy = 0.094602408717 SCF energy in the final basis set = -114.0042888051 Total energy in the final basis set = -114.0042888051 ccman2 params structure: ccman1 = 1 ccman2 = 0 ccman2.capable = 0 ccman2.memory = 1000 ccman2.threads = 1 ccman2.ccd = 0 ccman2.ccsd = 1 ccman2.ccsd.i = 1 ccman2.ccsd.l = 0 ccman2.ccsd.t = 1 ccman2.ccsd.t.solver = diis ccman2.ccsd.t.diis.econv = 1e-08 ccman2.ccsd.t.diis.freq = 1 ccman2.ccsd.t.diis.max_overlap = 1 ccman2.ccsd.t.diis.maxiter = 100 ccman2.ccsd.t.diis.min_overlap = 1e-11 ccman2.ccsd.t.diis.size = 7 ccman2.ccsd.t.diis.start = 3 ccman2.ccsd.t.diis.tconv = 1e-08 ccman2.eomdip_ccsd = 0 ccman2.eomea_ccsd = 0 ccman2.eomee_ccsd = 1 ccman2.eomee_ccsd.rhfref = 1 ccman2.eomee_ccsd.rhfref.singlets = 1 ccman2.eomee_ccsd.rhfref.singlets.nirreps = 1 ccman2.eomee_ccsd.rhfref.singlets.1.r = 1 ccman2.eomee_ccsd.rhfref.singlets.1.r.irrep = 0 ccman2.eomee_ccsd.rhfref.singlets.1.r.nguess_doubles = 0 ccman2.eomee_ccsd.rhfref.singlets.1.r.nguess_singles = 2 ccman2.eomee_ccsd.rhfref.singlets.1.r.nroots = 2 ccman2.eomee_ccsd.rhfref.singlets.1.r.solver = davidson ccman2.eomee_ccsd.rhfref.singlets.1.r.spin = singlet ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.conv = 1e-06 ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.maxiter = 30 ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.maxsubspace = 60 ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.precond_start = 0 ccman2.eomee_ccsd.rhfref.singlets.1.r.davidson.thresh = 1e-08 ccman2.eomee_ccsd.rhfref.singlets.1.r.print.irrep = 0 ccman2.eomee_ccsd.rhfref.singlets.1.r.print.thresh_r1 = 0.5 ccman2.eomee_ccsd.rhfref.singlets.1.r.print.thresh_r2 = 0.1 ccman2.eomee_ccsd.rhfref.triplets = 1 ccman2.eomee_ccsd.rhfref.triplets.nirreps = 1 ccman2.eomee_ccsd.rhfref.triplets.1.r = 1 ccman2.eomee_ccsd.rhfref.triplets.1.r.irrep = 0 ccman2.eomee_ccsd.rhfref.triplets.1.r.nguess_doubles = 0 ccman2.eomee_ccsd.rhfref.triplets.1.r.nguess_singles = 2 ccman2.eomee_ccsd.rhfref.triplets.1.r.nroots = 2 ccman2.eomee_ccsd.rhfref.triplets.1.r.solver = davidson ccman2.eomee_ccsd.rhfref.triplets.1.r.spin = triplet ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.conv = 1e-06 ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.maxiter = 30 ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.maxsubspace = 60 ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.precond_start = 0 ccman2.eomee_ccsd.rhfref.triplets.1.r.davidson.thresh = 1e-08 ccman2.eomee_ccsd.rhfref.triplets.1.r.print.irrep = 0 ccman2.eomee_ccsd.rhfref.triplets.1.r.print.thresh_r1 = 0.5 ccman2.eomee_ccsd.rhfref.triplets.1.r.print.thresh_r2 = 0.1 ccman2.eomee_ccsd.uhfref = 0 ccman2.eomip_ccsd = 0 ccman2.eomsf_ccsd = 0 ccman2.gradient = 0 ccman2.hf = 1 ccman2.hf.symmetry = 0 ccman2.hf.unrestricted = 0 ccman2.hf.ri = 0 sizes.nalpha = 8 sizes.nbasis = 42 sizes.nbeta = 8 sizes.nlinbasis = 42 sizes.norbs_per_block = 16 sizes.nreordermos = 0 sizes.ns2 = 969 sizes.ns2car = 969 sizes.frozen.occ = 0 sizes.frozen.virt = 0 sizes.restr.occ = 2 sizes.restr.virt = 0 --------- ****************************************************** * C C M A N * * * * Anna I. Krylov * * C. David Sherrill * * Steven R. Gwaltney * * Edward F. C. Byrd * * June 2000 * * * * AND * * * * Sergey V. Levchenko * * Lyudmila V. Slipchenko * * Tao Wang * * Ana-Maria C. Cristian * * * * November 2003 * * * * AND * * * * Piotr A. Pieniazek * * C. Melania Oana * * E. Epifanovsky * * * * October 2007 * * * * * ****************************************************** Adjusting EOM_EE_STATES The orbitals are ordered and numbered as follows: Alpha orbitals: Number Energy Type Symmetry ANLMAN number Total number: 0 -20.604 ROCC A1 1A1 1 1 -11.351 ROCC A1 2A1 2 2 -1.435 AOCC A1 3A1 3 3 -0.878 AOCC A1 4A1 4 4 -0.711 AOCC A1 5A1 5 5 -0.672 AOCC A1 6A1 6 6 -0.560 AOCC A1 7A1 7 7 -0.454 AOCC A1 8A1 8 0 0.077 AVIRT A1 9A1 9 1 0.092 AVIRT A1 10A1 10 2 0.104 AVIRT A1 11A1 11 3 0.118 AVIRT A1 12A1 12 4 0.168 AVIRT A1 13A1 13 5 0.259 AVIRT A1 14A1 14 6 0.287 AVIRT A1 15A1 15 7 0.314 AVIRT A1 16A1 16 8 0.324 AVIRT A1 17A1 17 9 0.369 AVIRT A1 18A1 18 10 0.407 AVIRT A1 19A1 19 11 0.524 AVIRT A1 20A1 20 12 0.855 AVIRT A1 21A1 21 13 0.942 AVIRT A1 22A1 22 14 0.949 AVIRT A1 23A1 23 15 1.169 AVIRT A1 24A1 24 16 1.185 AVIRT A1 25A1 25 17 1.237 AVIRT A1 26A1 26 18 1.437 AVIRT A1 27A1 27 19 1.474 AVIRT A1 28A1 28 20 1.478 AVIRT A1 29A1 29 21 1.726 AVIRT A1 30A1 30 22 1.758 AVIRT A1 31A1 31 23 1.794 AVIRT A1 32A1 32 24 1.957 AVIRT A1 33A1 33 25 2.197 AVIRT A1 34A1 34 26 2.226 AVIRT A1 35A1 35 27 2.490 AVIRT A1 36A1 36 28 2.722 AVIRT A1 37A1 37 29 2.893 AVIRT A1 38A1 38 30 3.021 AVIRT A1 39A1 39 31 3.363 AVIRT A1 40A1 40 32 4.434 AVIRT A1 41A1 41 33 4.612 AVIRT A1 42A1 42 EOM_EE_SINGLETS = 2 EOM_EE_TRIPLETS = 2 blck_tnsr_buffsz = 904 ccjobtype = properties ccman2 = 0 do_efp = 1 do_ri = 0 eomcorr = sd print_lvl = 1 refcorr = ccsd test_mode = 0 threads = 1 tmp_maxbuffsz = 96 unrestricted = 0 ccprop.calc_soc = 0 ccprop.ccref_prop = 1 ccprop.do_dyson = 0 ccprop.do_dyson_ee = 0 ccprop.eom_prop = 1 ccprop.eom_prop_1e = 1 ccprop.eom_prop_2e = 0 ccprop.fullresponse = 0 ccprop.plot_densities = 0 ccprop.ref_prop_1e = 1 ccprop.ref_prop_2e = 0 ccprop.trans_prop = 0 ccsd.dOV_threshold = 0 ccsd.diis_freq = 1 ccsd.diis_max_overlap = 1 ccsd.diis_min_overlap = 1e-11 ccsd.diis_size = 7 ccsd.diis_start = 3 ccsd.energy_convergence = 1e-08 ccsd.maxiter = 100 ccsd.restart = 0 ccsd.saveampl = 0 ccsd.scale_amp = 1 ccsd.solver = diis ccsd.t_convergence = 1e-08 ccsd.z_convergence = 1e-08 eom.convergence = 1e-06 eom.do_fake_ipea = 0 eom.dthreshold = 1e-06 eom.filter_ipea = 0 eom.maxiter = 30 eom.maxvectors = 60 eom.nguess_doubles = 0 eom.nguess_singles = 0 eom.preconv_doubles = 0 eom.preconv_sd = 0 eom.preconv_singles = 0 eom.use_exdiag = 0 mgc.amodel = 0 mgc.canonize = 0 mgc.canonize_final = 0 mgc.canonize_freq = 50 mgc.dOV_threshold = 0 mgc.diis = 0 mgc.diis12_switch = 1e-05 mgc.diis_freq = 2 mgc.diis_max_overlap = 1 mgc.diis_min_overlap = 1e-11 mgc.diis_size = 7 mgc.diis_start = 2 mgc.do_ed_ccd = 0 mgc.do_qccd = 0 mgc.energy_convergence = 1e-08 mgc.hess_threshold = 0.01 mgc.iterate_ov = 0 mgc.maxiter = 100 mgc.maxtrank = 0 mgc.mgc_ampread = 0 mgc.mgc_amps = 2 mgc.mgc_ampscale = 0 mgc.mgc_cc_gvb_guess = 0 mgc.mgc_create_dm = 0 mgc.mgc_eom = 0 mgc.mgc_frzn_core = 0 mgc.mgc_gvb_n_pairs = 0 mgc.mgc_ip = 0 mgc.mgc_localinter = 0 mgc.mgc_localints = 1 mgc.mgc_oo_type = 0 mgc.mgc_ph = 0 mgc.mgc_renorm = 0 mgc.mgc_skip_ae = 0 mgc.mgc_write_ints = 0 mgc.nlpairs = 2 mgc.preconv_frozen = 0 mgc.preconv_t2z = 0 mgc.preconv_t2z_each = 0 mgc.reset_theta = 15 mgc.restart = 0 mgc.saveampl = 0 mgc.scale_amp = 1 mgc.solver = diis mgc.t_convergence = 1e-08 mgc.theta_convergence = 0.0001 mgc.theta_grad_convergence = 0.0001 mgc.theta_grad_threshold = 0.01 mgc.theta_stepsize = 1 mgc.turn_on_qccd = 0.01 mgc.z_convergence = 1e-08 ooccd.canonize_final = 0 ooccd.canonize_freq = 50 ooccd.dOV_threshold = 0 ooccd.diis = 0 ooccd.diis12_switch = 1e-05 ooccd.diis_freq = 2 ooccd.diis_max_overlap = 1 ooccd.diis_min_overlap = 1e-11 ooccd.diis_size = 7 ooccd.diis_start = 2 ooccd.do_ed_ccd = 0 ooccd.do_qccd = 0 ooccd.energy_convergence = 1e-08 ooccd.hess_threshold = 0.01 ooccd.iterate_ov = 0 ooccd.maxiter = 100 ooccd.preconv_frozen = 0 ooccd.preconv_t2z = 0 ooccd.preconv_t2z_each = 0 ooccd.reset_theta = 15 ooccd.restart = 0 ooccd.saveampl = 0 ooccd.scale_amp = 1 ooccd.solver = diis ooccd.t_convergence = 1e-08 ooccd.theta_convergence = 0.0001 ooccd.theta_grad_convergence = 0.0001 ooccd.theta_grad_threshold = 0.01 ooccd.theta_stepsize = 1 ooccd.turn_on_qccd = 0.01 ooccd.z_convergence = 1e-08 orbitals.canonize = 1 orbitals.do_fno = 9900 orbitals.fno_thresh = 0.99 orbitals.mp2_grad = 0 orbitals.mp2no_guess = 0 orbitals.reorthogonalize_mo = 0 orbitals.restart_no_scf = 0 orbitals.restricted_amplitudes = 1 orbitals.restricted_triples = 0 orbitals.use_popthresh = 1 pt_corr.incl_core_corr = 1 pt_corr.incl_virt_corr = 1 pt_corr.sd_corr_only = 0 solvent_model.cc_solvent = 0 svd.analyze_t2 = 0 svd.d1_d2_diag = 0 svd.energy_decomp = 0 svd.svd_algorithm = 1 svd.svd_decompose_geminals = 0 svd.svd_first_geminal = 0 svd.svd_incl_singles = 1 svd.svd_n_values = 1 svd.svd_plot_geminals = 0 svd.t2_lowrank = 0 SETTING UP FNO CALCULATIONS Alpha-part: MP2 natural orbital populations in the VV block: 0 0 0.02490 1 0.01301 2 0.01259 3 0.00654 4 0.00577 5 0.00533 6 0.00382 7 0.00334 8 0.00316 9 0.00240 10 0.00231 11 0.00183 12 0.00180 13 0.00107 14 0.00105 15 0.00086 16 0.00076 17 0.00049 18 0.00045 19 0.00044 20 0.00033 21 0.00026 22 0.00020 23 0.00018 24 0.00012 25 0.00010 26 0.00008 27 0.00005 28 0.00003 29 0.00001 30 0.00001 31 0.00001 32 0.00001 33 0.00000 Beta-part: MP2 natural orbital populations in the VV block: 0 0 0.02490 1 0.01301 2 0.01259 3 0.00654 4 0.00577 5 0.00533 6 0.00382 7 0.00334 8 0.00316 9 0.00240 10 0.00231 11 0.00183 12 0.00180 13 0.00107 14 0.00105 15 0.00086 16 0.00076 17 0.00049 18 0.00045 19 0.00044 20 0.00033 21 0.00026 22 0.00020 23 0.00018 24 0.00012 25 0.00010 26 0.00008 27 0.00005 28 0.00003 29 0.00001 30 0.00001 31 0.00001 32 0.00001 33 0.00000 Total population of alpha-alpha NO = 0.09333 and beta-beta NO = 0.09333 Alpha-part: MP2 natural orbital populations in the VV block: 0 0 0.02490 1 0.03791 2 0.05051 3 0.05704 4 0.06281 5 0.06814 6 0.07196 7 0.07530 8 0.07846 9 0.08087 10 0.08318 11 0.08501 12 0.08681 13 0.08788 14 0.08893 15 0.08979 16 0.09055 17 0.09104 18 0.09150 19 0.09194 20 0.09228 21 0.09253 22 0.09274 23 0.09292 24 0.09304 25 0.09314 26 0.09322 27 0.09326 28 0.09329 29 0.09330 30 0.09331 31 0.09332 32 0.09332 33 0.09333 Beta-part: MP2 natural orbital populations in the VV block: 0 0 0.02490 1 0.03791 2 0.05051 3 0.05704 4 0.06281 5 0.06814 6 0.07196 7 0.07530 8 0.07846 9 0.08087 10 0.08318 11 0.08501 12 0.08681 13 0.08788 14 0.08893 15 0.08979 16 0.09055 17 0.09104 18 0.09150 19 0.09194 20 0.09228 21 0.09253 22 0.09274 23 0.09292 24 0.09304 25 0.09314 26 0.09322 27 0.09326 28 0.09329 29 0.09330 30 0.09331 31 0.09332 32 0.09332 33 0.09333 99.0000 % of the total population of alpha-alpha NO is recovered by 21 NOs (61.76 % of total MO) 99.0000 % of the total population of beta-beta NO is recovered by 21 NOs (61.76 % of total MO) WARNING: writing integers instead of virtual orbitals energies The orbitals are ordered and numbered as follows: Alpha orbitals: Number Energy Type Symmetry ANLMAN number Total number: 0 -20.604 ROCC A1 1A1 1 1 -11.351 ROCC A1 2A1 2 2 -1.435 AOCC A1 3A1 3 3 -0.878 AOCC A1 4A1 4 4 -0.711 AOCC A1 5A1 5 5 -0.672 AOCC A1 6A1 6 6 -0.560 AOCC A1 7A1 7 7 -0.454 AOCC A1 8A1 8 0 0.000 AVIRT A1 9A1 9 1 1.000 AVIRT A1 10A1 10 2 2.000 AVIRT A1 11A1 11 3 3.000 AVIRT A1 12A1 12 4 4.000 AVIRT A1 13A1 13 5 5.000 AVIRT A1 14A1 14 6 6.000 AVIRT A1 15A1 15 7 7.000 AVIRT A1 16A1 16 8 8.000 AVIRT A1 17A1 17 9 9.000 AVIRT A1 18A1 18 10 10.000 AVIRT A1 19A1 19 11 11.000 AVIRT A1 20A1 20 12 12.000 AVIRT A1 21A1 21 13 13.000 AVIRT A1 22A1 22 14 14.000 AVIRT A1 23A1 23 15 15.000 AVIRT A1 24A1 24 16 16.000 AVIRT A1 25A1 25 17 17.000 AVIRT A1 26A1 26 18 18.000 AVIRT A1 27A1 27 19 19.000 AVIRT A1 28A1 28 20 20.000 AVIRT A1 29A1 29 0 21.000 RVIRT A1 30A1 30 1 22.000 RVIRT A1 31A1 31 2 23.000 RVIRT A1 32A1 32 3 24.000 RVIRT A1 33A1 33 4 25.000 RVIRT A1 34A1 34 5 26.000 RVIRT A1 35A1 35 6 27.000 RVIRT A1 36A1 36 7 28.000 RVIRT A1 37A1 37 8 29.000 RVIRT A1 38A1 38 9 30.000 RVIRT A1 39A1 39 10 31.000 RVIRT A1 40A1 40 11 32.000 RVIRT A1 41A1 41 12 33.000 RVIRT A1 42A1 42 MOLECULAR PARAMETERS: ORB SYMM INFO: POINT GROUP=C1 NIRREPS = 1 MOL ORB= 42 IRREPS = A1 ORBSPI = 42 DOCC = 8 SOCC = 0 FDOCC = 0 RDOCC = 2 AAOCC = 6 BAOCC = 6 AAVIRT = 21 BAVIRT = 21 RUOCC = 13 FUOCC = 0 IRREP MULT TABLE: 0 ORBSYM ALPHA= A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 ORBSYM BETA = A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 BASIS ORBS = 42 MOL ORBS = 42 NAUXBASIS = 0 FROZEN OCC = 0 FROZEN VIR = 0 CORR ORBS = 42 CORR SP ORBS = 84 NUM ALP ELEC = 8 NUM BET ELEC = 8 NUM ALP EXPL = 8 NUM BET EXPL = 8 NUM SO OCC = 16 NUM SO VIR = 68 NUM RESTR DOCC= 2 NUM RESTR DVIRT= 13 ORBS PER BLCK = 16 RESTRICTED_REF = 1 BLOCKING PARAMETERS: NUM ROCC BLOCKS = 1 NUM AOCC BLOCKS= 1 NUM AVIRT BLOCKS= 2 NUM RVIRT BLOCKS= 1 ORBITALS/BLOCK = 2 6 2 6 11 10 13 11 10 13 BIRREP = A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 Non-canonical orbitals are detected... Canonize... Can-ze orbls... EHF = -114.004288774 EMP2 = -114.311681546 Beginning CC iterations Itr|Var|D|Energy |Delta_E|Delta_t|Comments 1| CC|-| -114.285975792|2.6E-02|1.6E-01| 2| CC|-| -114.308375095|2.2E-02|6.5E-02| 3| CC|-| -114.306420448|2.0E-03|2.6E-02| 4| CC|+| -114.309062016|2.6E-03|1.4E-02| 5| CC|+| -114.310300256|1.2E-03|3.9E-03| 6| CC|+| -114.310397708|9.7E-05|1.8E-03| 7| CC|+| -114.310429089|3.1E-05|4.3E-04| 8| CC|+| -114.310431699|2.6E-06|1.7E-04| 9| CC|+| -114.310431693|5.9E-09|5.8E-05| 10| CC|+| -114.310431454|2.4E-07|2.7E-05| 11| CC|+| -114.310431496|4.2E-08|1.2E-05| 12| CC|+| -114.310431499|3.1E-09|7.6E-06| 13| CC|+| -114.310431485|1.4E-08|4.3E-06| 14| CC|+| -114.310431472|1.2E-08|2.1E-06| 15| CC|+| -114.310431435|3.7E-08|1.1E-06| 16| CC|+| -114.310431427|8.1E-09|4.6E-07| 17| CC|+| -114.310431426|1.4E-09|2.2E-07| 18| CC|+| -114.310431426|1.5E-11|8.8E-08| 19| CC|+| -114.310431427|1.1E-09|4.1E-08| 20| CC|+| -114.310431427|2.3E-10|1.7E-08| 21| CC|+| -114.310431427|2.0E-11|8.5E-09| Calculation converged, 21 iterations Beginning Lambda iterations Itr|Var|D|Delta_L|Comments 1|Lam|-|3.3E-02| 2|Lam|-|1.2E-02| 3|Lam|-|6.2E-03| 4|Lam|+|3.1E-03| 5|Lam|+|8.7E-04| 6|Lam|+|3.7E-04| 7|Lam|+|1.0E-04| 8|Lam|+|4.1E-05| 9|Lam|+|1.4E-05| 10|Lam|+|6.1E-06| 11|Lam|+|2.9E-06| 12|Lam|+|1.7E-06| 13|Lam|+|1.0E-06| 14|Lam|+|5.4E-07| 15|Lam|+|2.6E-07| 16|Lam|+|1.1E-07| 17|Lam|+|5.3E-08| 18|Lam|+|2.3E-08| 19|Lam|+|1.0E-08| 20|Lam|+|4.7E-09| Calculation converged, 20 iterations WARNING: density has been written in density file Dipole moment x y z Total -1.294155210 0.001761227 0.015217300 a.u. |mu| = 1.294245872 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 36.246172519 14.712128311 8.617792960 a.u. Total = 59.576093789 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.003823378 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.003807630 Hartree Total = dE1 + dE2 = -0.000015748 Hartree = -0.0004 eV Ene with polarization correction= -114.310447176 hartree Largest T amplitudes Largest singles amplitudes: Value i -> a -0.0311 6( A1) B -> 0( A1) B (V) -0.0311 6( A1) A -> 0( A1) A (V) -0.0236 6( A1) B -> 11( A1) B (V) -0.0236 6( A1) A -> 11( A1) A (V) -0.0212 6( A1) B -> 6( A1) B (V) Largest doubles amplitudes: Value i j -> a b -0.1240 6( A1) A, 6( A1) B -> 0( A1) A, 0( A1) B (VV) -0.0482 7( A1) A, 7( A1) B -> 1( A1) A, 1( A1) B (VV) -0.0407 5( A1) A, 6( A1) B -> 2( A1) A, 0( A1) B (VV) -0.0407 6( A1) A, 5( A1) B -> 0( A1) A, 2( A1) B (VV) -0.0393 5( A1) A, 5( A1) B -> 2( A1) A, 2( A1) B (VV) EHF = -114.004288774 EMP2 = -114.311681546 Correlation Energy = -0.306142654 CCSD Total Energy = -114.310431427 CCSD or (V)OO-CCD job: CPU 3.88 s wall 3.89 s WARNING: this is QM/EFP job! Energies of the excited states are modified by the polarization correction due to EFP induced dipoles. Check for the total excited state energies in PROPERTIES output. Adjusting EOM_EE_STATES DOING EOM-CCSD CALCULATIONS Doubles diagonal is not filtered. SIZE OF T2 = 0.3 MB BLCK_TNSR_BUFFSZ=904 INCORE=2238 SOLVE EOM-CCSD EQUATIONS FOR RIGHT VECTORS of LOWSPIN STATES OF A1 IRREP Singles guess formation using CSF: State 1: 7 -> 0 ( 0.8947) State 2: 6 -> 0 ( 1.0285) 2 singly-excited guess vectors generated PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE: NROOTS = 2 MAX VECTORS = 60 MAXITER = 30 CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06 SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=2238 Itr|ConvR|ResNormR|NVecs|Comments 0| 0 |3.7E-01 | 2 | 1| 0 |6.8E-02 | 4 | 2| 0 |1.5E-02 | 6 | 3| 0 |4.8E-03 | 8 |Matrix::Gen_Diag() : eigenvalue of 2.11E+00+8.18E-03i for root 5 Matrix::Gen_Diag() : eigenvalue of 2.11E+00-8.18E-03i for root 6 2 complex roots ( 5, 6,) 4| 0 |1.8E-03 | 10 | 5| 0 |7.8E-04 | 12 | 6| 0 |4.4E-04 | 14 | 7| 0 |2.7E-04 | 16 | 8| 0 |1.3E-04 | 18 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 1.05E-07; ||Res||=1.03E-06 9| 1 |4.2E-05 | 20 | 10| 1 |1.3E-05 | 21 | 11| 1 |2.1E-05 | 22 | 12| 1 |2.9E-04 | 23 | 13| 1 |6.4E-03 | 24 | 14| 1 |2.5E-03 | 25 | 15| 1 |1.1E-03 | 26 | 16| 1 |5.7E-04 | 27 | 17| 1 |2.1E-04 | 28 | 18| 1 |7.2E-05 | 29 | 19| 1 |2.0E-05 | 30 | 20| 1 |4.8E-06 | 31 | 21| 1 |1.5E-06 | 32 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 3.33E-07; ||Res||=2.93E-06 22| 2 |4.5E-07 | 33 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 22 ITERATIONS Excitation energies, hartree 0 0 0.210393 1 0.413894 2 lowest LOWSPIN roots of symmetry A1: Root 1 Conv-d yes Tot Ene= -114.100038517 hartree (Ex Ene 5.7251 eV), U1^2=0.930852, U2^2=0.069148 ||Res||=1.6E-07 Right U1: Value i -> a -0.6468 7( A1) B -> 0( A1) B (V) -0.6468 7( A1) A -> 0( A1) A (V) -0.1443 7( A1) B -> 11( A1) B (V) -0.1443 7( A1) A -> 11( A1) A (V) Root 2 Conv-d yes Tot Ene= -113.896537159 hartree (Ex Ene 11.2626 eV), U1^2=0.929909, U2^2=0.070091 ||Res||=7.4E-07 Right U1: Value i -> a -0.6485 5( A1) B -> 0( A1) B (V) -0.6485 5( A1) A -> 0( A1) A (V) -0.1484 5( A1) B -> 11( A1) B (V) -0.1484 5( A1) A -> 11( A1) A (V) CALCULATING LEFT VECTORS: Re-orthogonalize vecs Itr|ConvR|ResNormR|NVecs|Comments 0| 0 |9.9E-03 | 2 | 1| 0 |6.9E-04 | 4 | 2| 0 |1.1E-04 | 6 | 3| 0 |2.1E-05 | 8 | 4| 0 |4.0E-06 | 10 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 4.60E-07; ||Res||=4.09E-06 NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 4.95E-07; ||Res||=3.98E-06 5| 1 |1.0E-06 | 12 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 1.06E-07; ||Res||=1.04E-06 6| 2 |5.7E-07 | 13 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 6 ITERATIONS Excitation energies, hartree 0 0 0.210394 1 0.413894 Re-orthogonalize vecs Biorthogonalize left and right vectors CALCULATE LEFT AND RIGHT VECTORS: Itr|ConvR|ConvL|ResNormR|ResNormL|NVecs|Lock|Comments 0| 2 | 2 |4.5E-07 |5.7E-07 | 2 | 2 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 0 ITERATIONS Excitation energies, hartree 0 0 0.210394 1 0.413894 SIZE OF T2 = 0.3 MB BLCK_TNSR_BUFFSZ=904 INCORE=2238 SOLVE EOM-CCSD EQUATIONS FOR RIGHT VECTORS of HIGHSPIN STATES OF A1 IRREP Singles guess formation using CSF: State 1: 7 -> 0 ( 0.8947) State 2: 6 -> 0 ( 1.0285) 2 singly-excited guess vectors generated PARAMETERS FOR NS-DAVIDSON DIAGONALIZATION PROCEDURE: NROOTS = 2 MAX VECTORS = 60 MAXITER = 30 CONVERGENCE =1.0E-06 THRESHOLD =1.0E-06 SKIP PRECONDITIONING FIRST 0 ITERATIONS INCORE_AMPL=2238 Itr|ConvR|ResNormR|NVecs|Comments 0| 0 |2.9E-01 | 2 | 1| 0 |3.5E-02 | 4 | 2| 0 |5.2E-03 | 6 | 3| 0 |9.3E-04 | 8 | 4| 0 |1.9E-04 | 10 | 5| 0 |5.7E-05 | 12 | 6| 0 |1.4E-05 | 14 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 4.58E-07; ||Res||=4.11E-06 7| 1 |2.0E-06 | 16 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 3.47E-07; ||Res||=3.15E-06 8| 2 |8.3E-07 | 17 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 8 ITERATIONS Excitation energies, hartree 0 0 0.194513 1 0.281423 2 lowest HIGHSPIN roots of symmetry A1: Root 1 Conv-d yes Tot Ene= -114.115918616 hartree (Ex Ene 5.2930 eV), U1^2=0.946984, U2^2=0.053016 ||Res||=7.3E-07 Right U1: Value i -> a 0.6557 7( A1) B -> 0( A1) B (V) -0.6557 7( A1) A -> 0( A1) A (V) 0.1382 7( A1) B -> 11( A1) B (V) -0.1382 7( A1) A -> 11( A1) A (V) Root 2 Conv-d yes Tot Ene= -114.029008612 hartree (Ex Ene 7.6579 eV), U1^2=0.970713, U2^2=0.029287 ||Res||=9.3E-07 Right U1: Value i -> a -0.6700 6( A1) B -> 0( A1) B (V) 0.6700 6( A1) A -> 0( A1) A (V) -0.1296 6( A1) B -> 11( A1) B (V) 0.1296 6( A1) A -> 11( A1) A (V) CALCULATING LEFT VECTORS: Re-orthogonalize vecs Itr|ConvR|ResNormR|NVecs|Comments 0| 0 |7.6E-03 | 2 | 1| 0 |4.9E-04 | 4 | 2| 0 |7.4E-05 | 6 | 3| 0 |1.2E-05 | 8 | 4| 0 |1.9E-06 | 10 |NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 0 is too small: 2.90E-07; ||Res||=2.62E-06 NSDavidsonRight::CalcCorrectionVec(): Warning! Scaled norm for root 1 is too small: 1.37E-07; ||Res||=1.27E-06 5| 2 |4.3E-07 | 12 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 5 ITERATIONS Excitation energies, hartree 0 0 0.194513 1 0.281425 Re-orthogonalize vecs Biorthogonalize left and right vectors Negative norm is detected for vector 0: NORM=-0.999038 Negative norm is detected for vector 1: NORM=-0.999361 CALCULATE LEFT AND RIGHT VECTORS: Itr|ConvR|ConvL|ResNormR|ResNormL|NVecs|Lock|Comments 0| 2 | 2 |8.3E-07 |4.3E-07 | 2 | 2 |Collapse current subspace DAVIDSON ITERATIONS CONVERGED, 0 ITERATIONS Excitation energies, hartree 0 0 0.194513 1 0.281425 EOM-CCSD PROPERTIES FOR LOWSPIN 1/A1 TRANSITION: Dipole moment x y z Total -0.931823862 0.007374192 0.021771761 a.u. |mu| = 0.932107343 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 35.771785810 13.509848012 9.285776075 a.u. Total = 58.567409897 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.017818595 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.017423029 Hartree Total = dE1 + dE2 = -0.000395567 Hartree = -0.0108 eV Tot Ene with polarization correction= -114.100432980 hartree (Ex Ene 5.714 eV) EOM-CCSD PROPERTIES FOR LOWSPIN 2/A1 TRANSITION: Dipole moment x y z Total -0.582730656 0.016482874 0.017073638 a.u. |mu| = 0.583213693 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 34.972834286 14.518545180 9.186957378 a.u. Total = 58.678336844 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.016678482 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.016115641 Hartree Total = dE1 + dE2 = -0.000562841 Hartree = -0.0153 eV Tot Ene with polarization correction= -113.897100046 hartree (Ex Ene 11.247 eV) EOM-CCSD PROPERTIES FOR HIGHSPIN 1/A1 TRANSITION: Dipole moment x y z Total -0.909240565 0.007559052 0.024287741 a.u. |mu| = 0.909596305 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 35.683052272 13.466102536 9.353974814 a.u. Total = 58.503129622 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.018048965 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.017615075 Hartree Total = dE1 + dE2 = -0.000433890 Hartree = -0.0118 eV Tot Ene with polarization correction= -114.116352066 hartree (Ex Ene 5.281 eV) EOM-CCSD PROPERTIES FOR HIGHSPIN 2/A1 TRANSITION: Dipole moment x y z Total -0.627653434 -0.002547264 0.015713974 a.u. |mu| = 0.627855279 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x^2 y^2 z^2 36.716557740 14.736294852 8.226563322 a.u. Total = 59.679415914 a.u. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EFP Polarization corrections: dE1 = 0.5 (mu_ex * F^total_ex - mu_gr * F^total_gr) = -0.020711212 Hartree dE2 = -0.5 (mu_ex - m_gr + mu_ex^tilda - mu_gr^tilda) * F^ai_ex = 0.020298974 Hartree Total = dE1 + dE2 = -0.000412238 Hartree = -0.0112 eV Tot Ene with polarization correction= -114.029419133 hartree (Ex Ene 7.647 eV) EOM-CCSD job: CPU 6.60 s wall 6.61 s CCMAN JOB: ALL CPU 10.86 s wall 10.87 s Analysis of SCF Wavefunction -------------------------------------------------------------- Orbital Energies (a.u.) -------------------------------------------------------------- Alpha MOs -- Occupied -- -20.604 -11.351 -1.435 -0.878 -0.711 -0.672 -0.560 -0.454 -- Virtual -- 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000 30.000 31.000 32.000 33.000 -------------------------------------------------------------- Ground-State Mulliken Net Atomic Charges Atom Charge (a.u.) ---------------------------------------- 1 C 0.037316 2 O -0.420291 3 H 0.172360 4 H 0.210614 ---------------------------------------- Sum of atomic charges = 0.000000 ----------------------------------------------------------------- Cartesian Multipole Moments ----------------------------------------------------------------- Charge (ESU x 10^10) 0.0000 Dipole Moment (Debye) X 3.2894 Y -0.0045 Z -0.0387 Tot 3.2896 Quadrupole Moments (Debye-Ang) XX -12.3006 XY 0.2247 YY -11.5021 XZ -0.1091 YZ -0.0027 ZZ -11.5912 Octapole Moments (Debye-Ang^2) XXX 1.7296 XXY 0.0802 XYY 1.3596 YYY 0.0961 XXZ -0.0216 XYZ 0.0184 YYZ -0.0224 XZZ -0.1137 YZZ -0.0074 ZZZ -0.0651 Hexadecapole Moments (Debye-Ang^3) XXXX -44.6367 XXXY 0.5530 XXYY -9.9858 XYYY 0.4323 YYYY -17.3659 XXXZ -0.2085 XXYZ -0.0043 XYYZ -0.0479 YYYZ -0.0023 XXZZ -9.1242 XYZZ 0.0871 YYZZ -4.8715 XZZZ -0.1324 YZZZ -0.0042 ZZZZ -9.9949 ----------------------------------------------------------------- Archival summary: 1\1\fluffy.usc.edu\SP\ProcedureUnspecified\6-31+G*\112\krylov\15Feb2011\0\\#,ProcedureUnspecified,6-31+G*,\\0,1\C\H,1,1.0869\H,1,1.09007,2,117.136\O,1,1.19092,2,121.916,3,179.96,0\\HF=-114.004289\\@ Total job time: 12.70s(wall), 12.68s(cpu) Tue Feb 15 07:45:01 2011 ************************************************************* * * * Thank you very much for using Q-Chem. Have a nice day. * * * *************************************************************