Entering Link 1 = C:\G03W\l1.exe PID= 872. Copyright (c) 1988,1990,1992,1993,1995,1998,2003, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003. ********************************************** Gaussian 03: x86-Win32-G03RevB.05 8-Nov-2003 16-Jun-2004 ********************************************** %chk=C:\CACheUser\Internship\Visualization\InProgress\Ethyne\ethyne.chk %mem=6MW %nproc=1 Will use up to 1 processors via shared memory. -------------------------------------------- # nmr=giao rb3lyp/6-31g(d) geom=connectivity -------------------------------------------- 1/38=1,57=2/1; 2/17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4/7=1/1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ---------- Ethyne NMR ---------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0 0. 0. 0.60249 H 0 X1 0. 1.66912 C 0 X2 Y1 -0.60249 H 0 X3 Y2 Z1 Variables: X1 0. X2 0. X3 0. Y1 0. Y2 0. Z1 -1.66912 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.602492 2 1 0 0.000000 0.000000 1.669118 3 6 0 0.000000 0.000000 -0.602492 4 1 0 0.000000 0.000000 -1.669118 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 C 0.000000 2 H 1.066626 0.000000 3 C 1.204984 2.271610 0.000000 4 H 2.271610 3.338235 1.066626 0.000000 Stoichiometry C2H2 Framework group D*H[C*(HC.CH)] Deg. of freedom 2 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.602492 2 1 0 0.000000 0.000000 1.669118 3 6 0 0.000000 0.000000 -0.602492 4 1 0 0.000000 0.000000 -1.669118 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 35.2735456 35.2735456 Standard basis: 6-31G(d) (6D, 7F) There are 10 symmetry adapted basis functions of AG symmetry. There are 1 symmetry adapted basis functions of B1G symmetry. There are 3 symmetry adapted basis functions of B2G symmetry. There are 3 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 10 symmetry adapted basis functions of B1U symmetry. There are 3 symmetry adapted basis functions of B2U symmetry. There are 3 symmetry adapted basis functions of B3U symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 34 basis functions, 64 primitive gaussians, 34 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 24.7170789606 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 5.66D+00 NAtFMM= 60 Big=F One-electron integrals computed using PRISM. NBasis= 34 RedAO= T NBF= 10 1 3 3 1 10 3 3 NBsUse= 34 1.00D-06 NBFU= 10 1 3 3 1 10 3 3 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06 HarFok: IExCor= 402 AccDes= 1.00D-06 IRadAn= 1 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (SGG) (SGU) (PIU) (PIU) (DLTG) (DLTG) (SGU) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) The electronic state of the initial guess is 1-SGG. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 681512. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -77.3256461796 A.U. after 9 cycles Convg = 0.5607D-09 -V/T = 2.0103 S**2 = 0.0000 Range of M.O.s used for correlation: 1 34 NBasis= 34 NAE= 7 NBE= 7 NFC= 0 NFV= 0 NROrb= 34 NOA= 7 NOB= 7 NVA= 27 NVB= 27 **** Warning!!: The largest alpha MO coefficient is 0.14619272D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Store integrals in memory, NReq= 607688. There are 3 degrees of freedom in the 1st order CPHF. 2 vectors were produced by pass 0. AX will form 2 AO Fock derivatives at one time. 2 vectors were produced by pass 1. 2 vectors were produced by pass 2. 2 vectors were produced by pass 3. 2 vectors were produced by pass 4. Inv2: IOpt= 1 Iter= 1 AM= 2.62D-16 Conv= 1.00D-12. Inverted reduced A of dimension 10 with in-core refinement. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 128.7930 Anisotropy = 225.3951 XX= 53.6613 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 53.6613 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 279.0565 Eigenvalues: 53.6613 53.6613 279.0565 2 H Isotropic = 30.9795 Anisotropy = 13.9936 XX= 26.3150 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 26.3150 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 40.3086 Eigenvalues: 26.3150 26.3150 40.3086 3 C Isotropic = 128.7930 Anisotropy = 225.3951 XX= 53.6613 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 53.6613 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 279.0565 Eigenvalues: 53.6613 53.6613 279.0565 4 H Isotropic = 30.9795 Anisotropy = 13.9936 XX= 26.3150 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 26.3150 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 40.3086 Eigenvalues: 26.3150 26.3150 40.3086 End of Minotr Frequency-dependent properties file 721 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) Virtual (PIG) (PIG) (SGU) (SGG) (SGU) (SGG) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (SGG) (SGU) (SGU) (PIU) (PIU) (DLTG) (DLTG) (DLTU) (DLTU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -10.19217 -10.18976 -0.74262 -0.56540 -0.49158 Alpha occ. eigenvalues -- -0.28192 -0.28192 Alpha virt. eigenvalues -- 0.05243 0.05243 0.10559 0.14884 0.42672 Alpha virt. eigenvalues -- 0.47082 0.53292 0.53292 0.65425 0.65425 Alpha virt. eigenvalues -- 0.74675 0.82440 1.02847 1.21765 1.50515 Alpha virt. eigenvalues -- 1.50642 1.50642 1.54919 1.54919 1.94364 Alpha virt. eigenvalues -- 1.94364 2.43195 2.48718 2.48718 3.19106 Alpha virt. eigenvalues -- 4.13473 4.32926 Condensed to atoms (all electrons): 1 2 3 4 1 C 4.878295 0.357840 0.984306 -0.032133 2 H 0.357840 0.484019 -0.032133 0.001965 3 C 0.984306 -0.032133 4.878295 0.357840 4 H -0.032133 0.001965 0.357840 0.484019 Mulliken atomic charges: 1 1 C -0.188309 2 H 0.188309 3 C -0.188309 4 H 0.188309 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 C 0.000000 2 H 0.000000 3 C 0.000000 4 H 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 59.8481 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -13.0251 YY= -13.0251 ZZ= -6.7620 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.0877 YY= -2.0877 ZZ= 4.1754 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -13.3543 YYYY= -13.3543 ZZZZ= -37.9604 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -4.4514 XXZZ= -11.6083 YYZZ= -11.6083 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.471707896056D+01 E-N=-2.284349011644D+02 KE= 7.653695105249D+01 Symmetry AG KE= 3.782939257376D+01 Symmetry B1G KE= 1.014407002339D-34 Symmetry B2G KE= 1.085609658161D-32 Symmetry B3G KE= 8.173727728910D-33 Symmetry AU KE= 2.098642072927D-34 Symmetry B1U KE= 3.427116874767D+01 Symmetry B2U KE= 2.218194865528D+00 Symmetry B3U KE= 2.218194865528D+00 1|1|UNPC-UNK|SP|RB3LYP|6-31G(d)|C2H2|PCUSER|16-Jun-2004|0||# NMR=GIAO RB3LYP/6-31G(D) GEOM=CONNECTIVITY||Ethyne NMR||0,1|C,0,0.,0.,0.6024918 6|H,0,0.,0.,1.66911772|C,0,0.,0.,-0.60249186|H,0,0.,0.,-1.66911772||Ve rsion=x86-Win32-G03RevB.05|State=1-SGG|HF=-77.3256462|RMSD=5.607e-010| Dipole=0.,0.,0.|PG=D*H [C*(H1C1.C1H1)]||@ ANYONE WHO IS NOT SHOCKED BY QUANTUM THEORY HAS NOT UNDERSTOOD IT. -- NIELS BOHR(1885-1962) Job cpu time: 0 days 0 hours 0 minutes 7.0 seconds. File lengths (MBytes): RWF= 11 Int= 0 D2E= 0 Chk= 10 Scr= 1 Normal termination of Gaussian 03 at Wed Jun 16 10:53:34 2004.